dc.creatorMaximiniano, Elisabeth S.
dc.creatorXavier-Elsas, Pedro Paulo
dc.creatorSales, Simone C. de Mendonça
dc.creatorJones, Carla P.
dc.creatorJoseph, Danielle
dc.creatorVargaftig, B. Boris
dc.creatorElsas, Maria Ignez Capella Gaspar
dc.date.accessioned2013-03-18T16:38:37Z
dc.date.accessioned2023-09-05T12:17:42Z
dc.date.available2013-03-18T16:38:37Z
dc.date.available2023-09-05T12:17:42Z
dc.date.created2013-03-18T16:38:37Z
dc.date.issued2005
dc.identifierMAXIMIANO, Elisabeth S. Cells isolated from bone-marrow and lungs of allergic BALB/C mice and cultured in the presence of IL-5 are respectively resistant and susceptible to apoptosis induced by dexamethasone. Int. immunopharmacol., Amsterdam, v. 5, n. 5, p. 857-870. may. 2005.
dc.identifierhttps://www.arca.fiocruz.br/handle/icict/6386
dc.identifier10.1016/j.intimp.2005.01.001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8653447
dc.languageeng
dc.publisherElservier Science
dc.relationSchwenger G, Mordvinov V, Fournier R, Czabotar P, Peroni S, Sanderson CJ. IL-5. IL-5. In: Oppenheim JJ, Feldmann ME. New York, NY7 Academic Press; 2000. p. 861–75.
dc.relationInman MD. Bone marrow events in animal models of allergic inflammation and hyperresponsiveness. J Allergy Clin Immunol 2000;106:S235– 41.
dc.relationFoster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996;183:195– 201.
dc.relationFoster PS, Mould AW, Yang M, Mackenzie J, Mattes J, Hogan SP, et al. Elemental signals regulating eosinophil accumulation in the lung. Immunol Rev 2001;179:173– 81.
dc.relationCieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest 1999;104:301–8.
dc.relationHamelmann E, Cieslewicz G, Schwarze J, Ishizuka T, Joetham C, Heusser C, et al. Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness. Am J Respir Crit Care Med 1999;160:934–41.
dc.relationEum SY, Haile S, Lefort J, Huerre M, Vargaftig BB. Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci U S A 1995;92:12290– 4.
dc.relationLee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 1997;185:2143 –56.
dc.relationGaspar M, Elsas I, Joseph D, Elsas PX, Vargaftig BB. Rapid increase in bone-marrow eosinophil production and responses to eosinopoietic interleukins triggered by intranasal allergen challenge. Am J Respir Cell Mol Biol 1997;17:404– 13.
dc.relationMinshall EM, Schleimer R, Cameron L, Minnicozzi M, Egan JC, Gutierrez-Ramos JC, et al. Interleukin-5 expression in the bone marrow of sensitized Balb/c mice after allergen challenge. Am J Respir Crit Care Med 1998;158:951–7.
dc.relationDenburg JA, Sehmi R, Upham J, Wood L, Gauvreau G, O’Byrne P. Regulation of IL-5 and IL-5 receptor expression in the bone marrow of allergic asthmatics. Int Arch Allergy Immunol 1999;118:101– 3.
dc.relationSehmi R, Wood LJ, Watson R, Foley R, Hamid Q, O’Byrne PM, et al. Allergen-induced increases in IL-5 receptor alphasubunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J Clin Invest 1997;100:2466– 75.
dc.relationInman MD, Ellis R, Wattie J, Denburg JA, O’Byrne PM. Allergen-induced increase in airway responsiveness, airway eosinophilia, and bone-marrow eosinophil progenitors in mice. Am J Respir Cell Mol Biol 1999;21:473– 9.
dc.relationWang J, Palmer K, Lotvall J, Milan S, Lei XF, Matthaei KI, et al. Circulating, but not local lung, IL-5 is required for the development of antigen-induced airways eosinophilia. J Clin Invest 1998;102:1132–41.
dc.relationProust B, Ruffie C, Lefort J, Vargaftig BB. Bronchopulmonary hyperreactivity and lung eosinophil sequestration but not their migration to the alveolar compartment are independent of interleukin-5 in allergic mice. Eur Cytokine Netw 2002;13: 340– 9.
dc.relationRobinson DS, Damia R, Zeibecoglou K, Molet S, North J, Yamada T, et al. CD34(+)/interleukin-5Ralpha messenger RNA+ cells in the bronchial mucosa in asthma: potential airway eosinophil progenitors. Am J Respir Cell Mol Biol 1999;20:9–13.
dc.relationDenburg JA, Inman MD, Wood L, Ellis R, Sehmi R, Dahlback M, et al. Bone marrow progenitors in allergic airways diseases: studies in canine and human models. Int Arch Allergy Immunol 1997;113:181– 3.
dc.relationGaspar Elsas MIC, Maximiano ES, Joseph D, Bonomo A, Vargaftig BB, Elsas PX. Isolation and characterization of hemopoietic cells from lungs of allergic mice. Chest 2003;345S– 8S.
dc.relationAsakura A, Rudnicki MA. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 2002;30:1339–45.
dc.relationBarnes PJ. Molecular mechanisms of corticosteroids in allergic diseases. Allergy 2001;56:928–36.
dc.relationGaspar Elsas MI, Vargaftig BB, Xavier Elsas P. Do glucocorticoids enhance eosinopoiesis? Trends Pharmacol Sci 2000;21:417–20.
dc.relationGaspar Elsas MI, Maximiano ES, Joseph D, Alves L, Topilko BB, Vargaftig BB, et al. Upregulation by glucocorticoids of responses to eosinopoietic cytokines in bone-marrow from normal and allergic mice. Br J Pharmacol 2000;129:1543– 52.
dc.relationMeagher LC, Cousin JM, Seckl JR, Haslett C. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996;156:4422– 8.
dc.relationWallen N, Kita H, Weiler D, Gleich GJ. Glucocorticoids inhibit cytokine-mediated eosinophil survival. J Immunol 1991;147:3490– 5.
dc.relationZhang X, Moilanen E, Adcock IM, Lindsay MA, Kankaanranta H. Divergent effect of mometasone on human eosinophil and neutrophil apoptosis. Life Sci 2002;71:1523– 34.
dc.relationBloom JW, Chacko J, Lohman IC, Halonen M, Martinez FD, Miesfeld RL. Differential control of eosinophil survival by glucocorticoids. Apoptosis 2004;9:97– 104.
dc.relationJones CP, Paula Neto HA, Assreuy J, Vargaftig BB, Gaspar Elsas MI, Elsas PX. Prostaglandin E2 and dexamethasone regulate eosinophil differentiation and survival through a nitric oxide- and CD95-dependent pathway. Nitric Oxide 2004;11: 184–93.
dc.relationMcCusker C, Chicoine M, Hamid Q, Mazer B. Site-specific sensitization in a murine model of allergic rhinitis: role of the upper airway in lower airways disease. J Allergy Clin Immunol 2002;110:891– 8.
dc.relationTen RM, Pease LR, McKean DJ, Bell MP, Gleich GJ. Molecular cloning of the human eosinophil peroxidase. Evidence for the existence of a peroxidase multigene family. J Exp Med 1989;169:1757– 69.
dc.relationHorton MA, Larson KA, Lee JJ, Lee NA. Cloning of the murine eosinophil peroxidase gene (mEPO): characterization of a conserved subgroup of mammalian hematopoietic peroxidases. J Leukoc Biol 1996;60:285– 94.
dc.relationTakamoto M, Sugane K. Synergism of IL-3, IL-5, and GMCSF on eosinophil differentiation and its application for an assay of murine IL-5 as an eosinophil differentiation factor. Immunol Lett 1995;45:43– 6.
dc.relationG.C. Bagby, Hematopoiesis. In The molecular basis of blood diseases. Hematopoiesis. In The molecular basis of blood diseases G. Stamatoyannopoulos, A.W. Nienhuis, P.W. Majerus, H.W.B. Varnus, Saunders, Philadelphia; 1994.
dc.relationElsas PX, Maximiano ES, Vargaftig BB, Elsas MI. The effects of allergen and anti-allergic drugs on murine hemopoietic cells: moving targets, unusual mechanisms, and changing paradigms. Curr Drug Targets Inflamm Allergy 2003;2:329–37.
dc.relationBjornson BH, Harvey JM, Rose L. Differential effect of hydrocortisone on eosinophil and neutrophil proliferation. J Clin Invest 1985;76:924– 9.
dc.relationButterfield JH, Ackerman SJ, Weiler D, Eisenbrey AB, Gleich GJ. Effects of glucocorticoids on eosinophil colony growth. J Allergy Clin Immunol 1986;78:450– 7.
dc.relationKuo HP, Wang CH, Lin HC, Hwang KS, Liu SL, Chung KF. Interleukin-5 in growth and differentiation of blood eosinophil progenitors in asthma: effect of glucocorticoids. Br J Pharmacol 2001;134:1539– 47.
dc.relationDebierre-Grockiego F, Fuentes V, Prin L, Gouilleux F, Gouilleux-Gruart V. Differential effect of dexamethasone on cell death and STAT5 activation during in vitro eosinopoiesis. Br J Haematol 2003;123:933– 41.
dc.relationGardai SJ, Hoontrakoon R, Goddard CD, Day BJ, Chang LY, Henson PM, et al. Oxidant-mediated mitochondrial injury in eosinophil apoptosis: enhancement by glucocorticoids and inhibition by granulocyte-macrophage colony-stimulating factor. J Immunol 2003;170:556– 66.
dc.relationLetuve S, Druilhe A, Grandsaigne M, Aubier M, Pretolani M. Critical role of mitochondria, but not caspases, during glucocorticosteroid-induced human eosinophil apoptosis. Am J Respir Cell Mol Biol 2002;26:565– 71.
dc.relationWard C, Dransfield I, Chilvers ER, Haslett C, Rossi AG. Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets. Trends Pharmacol Sci 1999;20:503–9.
dc.relationWang Z, Malone MH, Thomenius MJ, Zhong F, Xu F, Distelhorst CW. Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J Biol Chem 2003;278:27053– 8.
dc.rightsrestricted access
dc.titleCells isolated from bone-marrow and lungs of allergic BALB/C mice and cultured in the presence of IL-5 are respectively resistant and susceptible to apoptosis induced by dexamethasone
dc.typeArticle


Este ítem pertenece a la siguiente institución