dc.contributorEDSON EYJI SANO, CPAC; EDSON LUIS BOLFE, CNPTIA; TAYA CRISTO PARREIRAS, UNIVERSIDADE ESTADUAL DE CAMPINAS; GIOVANA MARANHAO BETTIOL, CPAC; LUIZ EDUARDO VICENTE, CNPMA; IARA DEL´ARCO SANCHES, INSTITUTO DE PESQUISAS ESPACIAIS; DANIEL DE CASTRO VICTORIA, CNPTIA.
dc.creatorSANO, E. E.
dc.creatorBOLFE, E. L.
dc.creatorPARREIRAS, T. C.
dc.creatorBETTIOL, G. M.
dc.creatorVICENTE, L. E.
dc.creatorDEL'ARCO SANCHES, I.
dc.creatorVICTORIA, D. de C.
dc.date2023-03-06T13:00:18Z
dc.date2023-03-06T13:00:18Z
dc.date2023-03-06
dc.date2023
dc.date.accessioned2023-09-05T02:18:07Z
dc.date.available2023-09-05T02:18:07Z
dc.identifierLand, v. 12, n. 3, 581, 2023.
dc.identifierhttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1152103
dc.identifierhttps://doi.org/10.3390/land12030581
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8635576
dc.descriptionAbstract: Farmers in the Brazilian Cerrado are increasing grain production by cultivating second crops during the same crop growing season. The release of PlanetScope (PS) satellite images represents an innovative opportunity to monitor double cropping production. In this study, we analyzed the potential of six PS monthly mosaics from the 2021/2022 crop growing season to discriminate double cropping areas in the municipality of Goiatuba, Goiás State, Brazil. The four multispectral bands of the PS images were converted into normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), green-red normalized difference index (GRNDI), and textural features derived from the gray-level co-occurrence matrix (GLCM). The ten most important combinations of these attributes were used to map double cropping systems and other land use and land cover classes (cultivated pasture, sugarcane, and native vegetation) of the municipality through the Random Forest classifier. Training and validation samples were obtained from field campaigns conducted in October 2021 and April 2022. PS mosaic from February 2022 was the most relevant data. The overall accuracy and Kappa index of the final map were 92.2% and 0.892, respectively, with an accuracy confidence of 81%. This approach can be expanded for mapping and monitoring other agricultural frontiers in the Cerrado biome.
dc.languageIngles
dc.languageen
dc.rightsopenAccess
dc.subjectFloresta aleatória
dc.subjectMapeamento do uso da terra
dc.subjectMapeamento de cobertura da terra
dc.subjectCobertura da terra
dc.subjectConstelação de satélites
dc.subjectMatriz de coocorrência em nível de cinza
dc.subjectSavana tropical
dc.subjectRandom forest
dc.subjectGray-level co-occurrence matrix
dc.subjectGRNDI
dc.subjectLand use and land cover mapping
dc.subjectSatellite constellation
dc.subjectTropical savanna
dc.subjectUso da Terra
dc.subjectLand use
dc.subjectLand cover
dc.titleEstimating double cropping plantations in the Brazilian Cerrado through PlanetScope monthly mosaics.
dc.typeArtigo de periódico


Este ítem pertenece a la siguiente institución