dc.contributorCobre, Juliana
dc.contributorhttp://lattes.cnpq.br/1042802390444616
dc.contributorNakano, Eduardo Yoshio
dc.contributorhttp://lattes.cnpq.br/4408437084347961
dc.contributorhttp://lattes.cnpq.br/7615391562048988
dc.contributorhttps://orcid.org/0000-0003-3610-1623
dc.contributorhttps://orcid.org/0000-0002-9071-8512
dc.creatorCardial, Marcílio Ramos Pereira
dc.date.accessioned2023-06-13T18:53:36Z
dc.date.accessioned2023-09-04T20:27:51Z
dc.date.available2023-06-13T18:53:36Z
dc.date.available2023-09-04T20:27:51Z
dc.date.created2023-06-13T18:53:36Z
dc.date.issued2023-04-25
dc.identifierCARDIAL, Marcílio Ramos Pereira. Modelo de regressão chances de sobrevivência proporcionais para dados discretos com presença de censura. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18142.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/18142
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630689
dc.description.abstractSurvival models, in their majority, consider continuous survival times. However, in several studies these times are discrete, and in some occasions, it is not advisable to use a continuous model to analyze discrete data. One of the most popular regression models in the analysis of survival data is the Cox proportional hazards model, whose main characteristic is to consider that the covariates have a multiplicative effect on the hazard function. However, this feature cannot be satisfied when survival times are discrete, due to the hazard function being bounded in the interval (0, 1). To solve this problem, Cox suggested a discrete alternative of his model. Another alternative regression model was presented by Bennett, which assumes that covariates have a multiplicative effect on the odds of survival. These models are referred to as proportional odds (survival) models. In this context, the present paper aims to consider proportional odds modeling as an alternative for building regression models for discrete survival data. More specifically, the objectives are: (a) to study the proportional odds model for continuous time; (b) to build the regression model for data with proportional odds of survival and discrete time; (c) to obtain point and interval estimates of the model parameters; (d) to propose procedures to verify the proportional odds assumption and the quality of the model fit; (e) to illustrate the model and proposed procedures on a real data set. The results obtained on simulated data indicated evidence of the asymptotic properties of the estimators and the proposed model showed a good fit to the real data set, proving to be a good alternative for modeling discrete survival data with covariates.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectTempos de sobrevivência discretos
dc.subjectModelo de chances proporcionais
dc.subjectModelo de regressão
dc.subjectDiscrete survival times
dc.subjectProportional odds model
dc.subjectRegression model
dc.titleModelo de regressão chances de sobrevivência proporcionais para dados discretos com presença de censura
dc.typeTese


Este ítem pertenece a la siguiente institución