dc.contributorCerqueira, Andressa
dc.contributorhttp://lattes.cnpq.br/1934493281651316
dc.contributorhttp://lattes.cnpq.br/7428310208004221
dc.creatorCosta, Laila Letícia da Silva
dc.date.accessioned2023-06-01T13:11:11Z
dc.date.accessioned2023-09-04T20:27:43Z
dc.date.available2023-06-01T13:11:11Z
dc.date.available2023-09-04T20:27:43Z
dc.date.created2023-06-01T13:11:11Z
dc.date.issued2023-04-04
dc.identifierCOSTA, Laila Letícia da Silva. Inferência em redes aleatórias com pesos discretos. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18097.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/18097
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630649
dc.description.abstractRandom networks have been widely used to describe interactions between objects, including interpersonal relationships between individuals. One of the most important features of networks is the presence of communities, which are groups of nodes with similar patterns of connection. In this regard, we propose a model in which edges between pairs of vertices are randomly assigned, given the communities of those vertices, following the zero-inflated Poisson (ZIP) distribution. This proposal allows us to model networks with community structure that are sparse and have edge weights. The estimation of the parameters of the ZIP distribution is performed using the EM algorithm, while the estimation of communities is done using the EM-Variational algorithm. The performance of the estimators is evaluated through simulation studies, using the Normalized Mutual Information (NMI) comparison measure to compare the true and estimated communities. To compare the estimated parameters of the ZIP distribution, we use the Mean Squared Error (MSE). Finally, we apply the proposed model to airport networks in Brazil and detect the community structure from 2018 to 2021, in order to evaluate the changes that occurred in these networks before and during the COVID-19 pandemic period.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsCC0 1.0 Universal
dc.subjectRedes aleatórias
dc.subjectDetecção de comunidades
dc.subjectModelo estocásticos em blocos
dc.subjectDistribuição de Poisson inflada de zeros
dc.subjectEM-Variacional
dc.subjectRandom network
dc.subjectCommunity detection
dc.subjectStochastic block model
dc.subjectZero-inflated Poisson distribution
dc.subjectVariational EM
dc.titleInferência em redes aleatórias com pesos discretos
dc.typeDissertação


Este ítem pertenece a la siguiente institución