dc.contributorMontoril, Michel Helcias
dc.contributorhttp://lattes.cnpq.br/9993502064983663
dc.contributorhttp://lattes.cnpq.br/8392595039676608
dc.creatorMotta, Flávia Castro
dc.date.accessioned2023-05-17T13:32:49Z
dc.date.accessioned2023-09-04T20:27:33Z
dc.date.available2023-05-17T13:32:49Z
dc.date.available2023-09-04T20:27:33Z
dc.date.created2023-05-17T13:32:49Z
dc.date.issued2023-04-20
dc.identifierMOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18028.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/18028
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630595
dc.description.abstractGaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures.
dc.languageeng
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by/3.0/br/
dc.rightsAttribution 3.0 Brazil
dc.subjectMixture problem
dc.subjectChange-point detection
dc.subjectWavelets
dc.subjectSpike and slab prior
dc.subjectWavelet empirical Bayes
dc.titleBayesian estimation of dynamic mixture models by wavelets
dc.typeDissertação


Este ítem pertenece a la siguiente institución