dc.contributorEhlers, Ricardo Sandes
dc.contributorhttp://lattes.cnpq.br/4020997206928882
dc.contributorhttp://lattes.cnpq.br/9428128499731511
dc.creatorCondori, Ritha Rubi Huaysara
dc.date.accessioned2023-05-03T13:56:22Z
dc.date.accessioned2023-09-04T20:27:13Z
dc.date.available2023-05-03T13:56:22Z
dc.date.available2023-09-04T20:27:13Z
dc.date.created2023-05-03T13:56:22Z
dc.date.issued2023-02-28
dc.identifierCONDORI, Ritha Rubi Huaysara. Inferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétrica. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17922.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/17922
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630491
dc.description.abstractThis dissertation aims to evaluate and compare the performance of the No-U-Turn Sampler (NUTS) algorithm, implemented in the Stan software, in estimating the parameters of stochastic volatility models with leverage based on scale mixtures of the skew-normal distribution. These SV models can simultaneously capture important features of financial return series, such as leverage effect, heavy tails, and asymmetry. The results of simulation studies show that, according to bias and root mean squared error (RMSE) measures, the NUTS algorithm performs well. When comparing the NUTS sampling approach with that of the stochvol package, we observe that stochvol has faster execution times, but NUTS outperforms it in terms of effective sample size. Additionally, we propose the use of the Leave-Future-Out Cross-Validation (LFO-CV) technique for selecting stochastic volatility models and evaluate the performance of information criteria and cross-validation techniques for model selection. Finally, we apply the developed methodology to real return series.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectModelos de volatilidade estocástica
dc.subjectMistura de escala da distribuição normal assimétrica
dc.subjectEfeito de Alavancagem
dc.subjectAlgoritmo No-U-Turn Sampler
dc.subjectLeave-future-out cross-validation
dc.subjectScale mixtures of the skew-normal distribution
dc.subjectStochastic volatility models
dc.subjectLeverage effect
dc.titleInferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétrica
dc.typeDissertação


Este ítem pertenece a la siguiente institución