dc.contributorMilan, Luis Aparecido
dc.contributorhttp://lattes.cnpq.br/7435391829973844
dc.contributorhttp://lattes.cnpq.br/7684818359088502
dc.creatorSantos, Eriton Barros dos
dc.date.accessioned2023-04-25T17:01:51Z
dc.date.accessioned2023-09-04T20:27:05Z
dc.date.available2023-04-25T17:01:51Z
dc.date.available2023-09-04T20:27:05Z
dc.date.created2023-04-25T17:01:51Z
dc.date.issued2023-02-24
dc.identifierSANTOS, Eriton Barros dos. Seleção de covariância para o modelo grafo gaussiano via reversible jump. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17866.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/17866
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630449
dc.description.abstractThe purpose of the Graphical Gaussian model is to find the covariance structure that represents the relationship between random variables, whose joint distribution is a multivariate normal. This is a tool used to modeling Gaussian graphs. The inference of parameters of this type of modeling is commonly based on maximum likelihood estimation. However, this type of methodology requires the adjustment of all possible models to verify which model best represents the relationship between the variables. In case any model, among all the possibilities, presents an estimation problem, the result may not represent the true relationship between the variables. We propose alterations in the procedure based on the Reversible Jump algorithm of Dobra et al. (2011) for selecting and fitting the Graphical Gaussian model. We also create indicators to evaluate simulation results from a Graphical Gaussian model. The results obtained in this work are favorable to our proposal presented, in which an improvement in the model selection method was observed, reducing the error when searching for the covariance structure.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectModelo Grafo Gaussiano
dc.subjectModelo Grafo
dc.subjectGrafo Gaussiano
dc.subjectSeleção de Modelo
dc.subjectSeleção de Covariância
dc.subjectCorrelação Parcial
dc.subjectGraphical Gaussian Model
dc.subjectGraphical Model
dc.subjectGaussian Graphs
dc.subjectMetropolis-Hastings
dc.subjectReversible Jump
dc.subjectModel Selection
dc.subjectCovariance Selection Model
dc.subjectPartial Correlation
dc.titleSeleção de covariância para o modelo grafo gaussiano via reversible jump
dc.typeTese


Este ítem pertenece a la siguiente institución