dc.contributor | Ribeiro, Marcela Xavier | |
dc.contributor | http://lattes.cnpq.br/0300141044144026 | |
dc.creator | Silva, Jonathan Santos | |
dc.date.accessioned | 2023-04-13T18:31:54Z | |
dc.date.accessioned | 2023-09-04T20:26:47Z | |
dc.date.available | 2023-04-13T18:31:54Z | |
dc.date.available | 2023-09-04T20:26:47Z | |
dc.date.created | 2023-04-13T18:31:54Z | |
dc.date.issued | 2023-03-28 | |
dc.identifier | SILVA, Jonathan Santos. Classificação de decisões judiciais sobre dados presentes no diário eletrônico da justiça do trabalho (DEJT). 2023. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17735. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/17735 | |
dc.identifier | https://github.com/perebaj/playground/tree/main/etl_dejt | |
dc.identifier | https://colab.research.google.com/drive/1iivSVTwML7vmdnc_ CtK05G28_7CD9fuq?usp=sharing | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8630349 | |
dc.description.abstract | Efficiently classifying legal decisions as approved or rejected is critical to ensuring a fair and effective justice system. This study presents a solution for this task, using machine learning techniques. The proposed solution involves data structuring, unit identification,
labeling by experts, and training a machine learning model. O study included an exploratory analysis of source data and pre-processing techniques text for cleaning and normalizing the data. The proposed model achieved a rate high accuracy of 96%. Finally, we validate the model using external data and real cases. The results suggest that the model has the potential to be an effective solution for classifying legal decisions accurately and quickly. | |
dc.language | por | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | UFSCar | |
dc.publisher | Câmpus São Carlos | |
dc.publisher | Engenharia de Computação - EC | |
dc.rights | http://creativecommons.org/licenses/by/3.0/br/ | |
dc.rights | Attribution 3.0 Brazil | |
dc.subject | Data mining | |
dc.subject | Jurimetria | |
dc.title | Classificação de decisões judiciais sobre dados presentes no diário eletrônico da justiça do trabalho (DEJT) | |
dc.type | TCC | |