dc.contributorLevada, Alexandre Luis Magalhães
dc.contributorhttp://lattes.cnpq.br/3341441596395463
dc.creatorCalixto, Ariel Semensato
dc.date.accessioned2023-04-05T18:48:31Z
dc.date.accessioned2023-09-04T20:26:22Z
dc.date.available2023-04-05T18:48:31Z
dc.date.available2023-09-04T20:26:22Z
dc.date.created2023-04-05T18:48:31Z
dc.date.issued2023-03-29
dc.identifierCALIXTO, Ariel Semensato. Análise e aplicações do algoritmo UMAP para classificação e redução de dimensionalidade de conjuntos de dados com múltiplas variáveis. 2023. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17623.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/17623
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630215
dc.description.abstractThrough many real-life applications, gathering information through real instruments subject to noise and imperfections tends to generate datasets where the number of observed variables and components easily exceeds a number of dimensions where manipulation, clustering and classification of said data into distinct sets based on their similarities becomes either difficult or computationally expensive. An efficient way to preemptively prepare this data for further processing and meaningful representation is dimensionality reduction, a process that transforms a dataset from a high-dimensional space to a low-dimensional space such as the low-dimensional space still retains relevant properties from the original dataset. This work proposes to evaluate the current state-of-the-art and establish, using performance criteria, comparisons between the frequently used dimensionality reduction used today and historically, with the main focus on UMAP, a method that seeks to prioritize the classification of data locally close by means of their characteristics. Results were obtained using different datasets with different properties, in order to obtain relevant metrics on the impact that each characteristic of these datasets has on the final results.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherCâmpus São Carlos
dc.publisherEngenharia de Computação - EC
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsCC0 1.0 Universal
dc.subjectRedução de dimensionalidade
dc.subjectClassificação de conjuntos
dc.subjectAprendizado de máquina
dc.subjectPCA
dc.subjectt-SNE
dc.subjectUMAP
dc.titleAnálise e aplicações do algoritmo UMAP para classificação e redução de dimensionalidade de conjuntos de dados com múltiplas variáveis
dc.typeTCC


Este ítem pertenece a la siguiente institución