dc.contributor | Pedrino, Emerson Carlos | |
dc.contributor | http://lattes.cnpq.br/6481363465527189 | |
dc.contributor | http://lattes.cnpq.br/0522306511690493 | |
dc.creator | Lima, Denis Pereira | |
dc.date.accessioned | 2023-04-03T17:55:40Z | |
dc.date.accessioned | 2023-09-04T20:26:17Z | |
dc.date.available | 2023-04-03T17:55:40Z | |
dc.date.available | 2023-09-04T20:26:17Z | |
dc.date.created | 2023-04-03T17:55:40Z | |
dc.date.issued | 2022-12-07 | |
dc.identifier | LIMA, Denis Pereira. Framework para investigação de mapeamentos de aplicações em arquiteturas manycore. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17580. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/17580 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8630191 | |
dc.description.abstract | This thesis proposes an implementation of a framework for mapping graphs onto manycore architectures with multi-objective metrics optimization. The aim is to propose a new approach in relation to the works found in the related literature. To validate this proposal, the following are presented: a calibration methodology and multi-objective mapping of tasks related to pattern detection in high-resolution images (binary and grayscale), and a proposal for a new self-adaptive methodology to be used in multi-objective algorithms for mapping applications for manycore architectures. The results obtained through the pattern detection and task mapping methodology on manycore architectures demonstrate a high rate of generalization and accuracy. This brings a new contribution regarding the use of the evaluated multi-objective algorithms, with the best performance obtained by the PESAII algorithm, which was not previously reported in the literature. The methodology related to the mapping and use of the self-adaptive strategy represents a complete study with the Hypervolume and IGD performance indicators, proving the greater effectiveness of PESAII for the Hypervolume metric. This also makes a new contribution regarding the NSGAIII and SPEA2 algorithms regarding the metric IGD, demonstrating the improvement of the obtained results in the use of the proposed self-adaptive strategy. | |
dc.language | por | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Ciência da Computação - PPGCC | |
dc.publisher | Câmpus São Carlos | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | |
dc.subject | Mapeamento de tarefas | |
dc.subject | Arquiteturas manycore | |
dc.subject | Otimização multiobjetivo autoadaptativa | |
dc.subject | Tolerância a falhas | |
dc.subject | Eficiência energética | |
dc.subject | Balanceamento de carga | |
dc.subject | Task mapping | |
dc.subject | Manycore architectures | |
dc.subject | Self-adaptive multi-objective optimization | |
dc.subject | Fault Tolerance | |
dc.subject | Energy efficiency | |
dc.subject | Load balance | |
dc.title | Framework para investigação de mapeamentos de aplicações em arquiteturas manycore | |
dc.type | Tese | |