dc.contributorPedrino, Emerson Carlos
dc.contributorhttp://lattes.cnpq.br/6481363465527189
dc.contributorhttp://lattes.cnpq.br/0522306511690493
dc.creatorLima, Denis Pereira
dc.date.accessioned2023-04-03T17:55:40Z
dc.date.accessioned2023-09-04T20:26:17Z
dc.date.available2023-04-03T17:55:40Z
dc.date.available2023-09-04T20:26:17Z
dc.date.created2023-04-03T17:55:40Z
dc.date.issued2022-12-07
dc.identifierLIMA, Denis Pereira. Framework para investigação de mapeamentos de aplicações em arquiteturas manycore. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17580.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/17580
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630191
dc.description.abstractThis thesis proposes an implementation of a framework for mapping graphs onto manycore architectures with multi-objective metrics optimization. The aim is to propose a new approach in relation to the works found in the related literature. To validate this proposal, the following are presented: a calibration methodology and multi-objective mapping of tasks related to pattern detection in high-resolution images (binary and grayscale), and a proposal for a new self-adaptive methodology to be used in multi-objective algorithms for mapping applications for manycore architectures. The results obtained through the pattern detection and task mapping methodology on manycore architectures demonstrate a high rate of generalization and accuracy. This brings a new contribution regarding the use of the evaluated multi-objective algorithms, with the best performance obtained by the PESAII algorithm, which was not previously reported in the literature. The methodology related to the mapping and use of the self-adaptive strategy represents a complete study with the Hypervolume and IGD performance indicators, proving the greater effectiveness of PESAII for the Hypervolume metric. This also makes a new contribution regarding the NSGAIII and SPEA2 algorithms regarding the metric IGD, demonstrating the improvement of the obtained results in the use of the proposed self-adaptive strategy.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectMapeamento de tarefas
dc.subjectArquiteturas manycore
dc.subjectOtimização multiobjetivo autoadaptativa
dc.subjectTolerância a falhas
dc.subjectEficiência energética
dc.subjectBalanceamento de carga
dc.subjectTask mapping
dc.subjectManycore architectures
dc.subjectSelf-adaptive multi-objective optimization
dc.subjectFault Tolerance
dc.subjectEnergy efficiency
dc.subjectLoad balance
dc.titleFramework para investigação de mapeamentos de aplicações em arquiteturas manycore
dc.typeTese


Este ítem pertenece a la siguiente institución