dc.contributorGallo, Alexsandro Giacomo Grimbert
dc.contributorhttp://lattes.cnpq.br/4037274656833325
dc.contributorLeonardi, Florencia Graciela
dc.contributorhttp://lattes.cnpq.br/7805423923220410
dc.contributorhttp://lattes.cnpq.br/7995991837839001
dc.creatorTapia, Cristel Ecaterin Vera
dc.date.accessioned2023-03-01T13:18:06Z
dc.date.accessioned2023-09-04T20:25:52Z
dc.date.available2023-03-01T13:18:06Z
dc.date.available2023-09-04T20:25:52Z
dc.date.created2023-03-01T13:18:06Z
dc.date.issued2022-12-14
dc.identifierTAPIA, Cristel Ecaterin Vera. Estimação do número de comunidades no modelo estocástico de blocos com correção de grau. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17431.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/17431
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8630066
dc.description.abstractThe stochastic block model (SBM) is a random graph model that splits the set of vertices into blocks, and the probability connection between each pair of vertices depends on the blocks to which the vertices belong. The SBM was introduced by Holland et al. (1983) and it is traditionally applied to simple graphs, with each entry in the adjacency matrix following the Bernoulli distribution. Karrer and Newman (2011) extended the model in two directions: they defined the multigraph model (Poisson SBM), in which the entries of the adjacency matrix follow the Poisson distribution, and introduced the degree corrected stochastic block model (DCSBM) that allows the degree distribution of vertices also depend on the vertices, and not just on the blocks they belong to. This thesis is devoted to the problem of estimating the number of communities in the Poisson SBM and DCSBM. We consider the dense regime, in which the probability of connection between pairs of vertices does not depend on the size of the graph, or even the semi-sparse regime, in which the probability of connection between pairs of vertices can decay to 0 (at a certain rate) with the size of the graph. In this general context, we prove that the estimator of the number of communities introduced by Cerqueira and Leonardi (2020) (with the necessary changes) is still strongly consistent.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectModelo estocástico de blocos de Poisson
dc.subjectModelo estocástico de blocos com correção de grau
dc.subjectEstimação do número de comunidades
dc.subjectregime semi-esparso
dc.subjectPoisson stochastic block model
dc.subjectDegree corrected stochastic block model
dc.subjectEstimation of the number of communities
dc.subjectsemi-sparse regime
dc.titleEstimação do número de comunidades no modelo estocástico de blocos com correção de grau
dc.typeTese


Este ítem pertenece a la siguiente institución