dc.contributorZuanetti, Daiane Aparecida
dc.contributorhttp://lattes.cnpq.br/8352484284929824
dc.contributorhttp://lattes.cnpq.br/8535649395348433
dc.creatorRibeiro, Taís Roberta
dc.date.accessioned2022-11-16T13:17:40Z
dc.date.accessioned2023-09-04T20:24:39Z
dc.date.available2022-11-16T13:17:40Z
dc.date.available2023-09-04T20:24:39Z
dc.date.created2022-11-16T13:17:40Z
dc.date.issued2022-10-14
dc.identifierRIBEIRO, Taís Roberta. Métodos de estimação baseados em modelos na presença de dados faltantes. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17030.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/17030
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8629700
dc.description.abstractThe missing data are observations that should have been made, but were not for some reason, thus reducing the ability to understand the nature of the phenomenon, in addition to making it difficult to extract information from the analyzed data, since the impact on the results of the studies is not always known. As a considerable part of the statistical techniques were developed to analyze complete data, the missing data usually need to be treated in such a way that the resulting dataset can be analyzed by such established methods. The most used methods to deal with missing data are divided, mainly, between methods of data removal and imputation, being both configurations, in most cases, disadvantageous in terms of the analysis of the final result, either by making the results biased or because we have to work with the uncertainty associated with the imputation of unknown values. In this work, then, we propose some model-based methods for solving the problem of missing data for regression analysis, without having to resort to imputation or removal of information. We verified the performance of the proposed methodologies on simulated data under different scenarios and compared it with the performance of other traditional techniques of imputation and data removal.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectModelos lineares e não lineares de regressão
dc.subjectImputação de dados
dc.subjectIntegração numérica
dc.subjectAlgoritmo EM
dc.subjectLinear and nonlinear regression models
dc.subjectData imputation
dc.subjectNumerical integration
dc.subjectEM algorithm
dc.titleMétodos de estimação baseados em modelos na presença de dados faltantes
dc.typeTese


Este ítem pertenece a la siguiente institución