dc.contributorhttp://lattes.cnpq.br/6975165037874387
dc.creatorCandido, Leandro [UNIFESP]
dc.date.accessioned2023-07-05T17:22:56Z
dc.date.accessioned2023-09-04T18:25:14Z
dc.date.available2023-07-05T17:22:56Z
dc.date.available2023-09-04T18:25:14Z
dc.date.created2023-07-05T17:22:56Z
dc.date.issued2023
dc.identifierhttps://repositorio.unifesp.br/11600/68457
dc.identifierDOI: 10.4064/cm8868-10-2022
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8614415
dc.description.abstractWe investigate the geometry of C(K, X) and ℓ ∞ (X) spaces through complemented subspaces of the form ( i∈Γ X i ) c 0 . For Banach spaces X and Y , we prove that if ℓ ∞ (X) has a complemented subspace isomorphic to c 0 (Y ), then, for some n ∈ N, X n has a subspace isomorphic to c 0 (Y ). If K and L are Hausdorff compact spaces and X and Y are Banach spaces having no subspace isomorphic to c 0 we further prove the following: (1) If C(K) ∼ c 0 (C(K)) and C(L) ∼ c 0 (C(L)) and ℓ ∞ (C(K, X)) ∼ ℓ ∞ (C(L, Y )), then K and L have the same cardinality. (2) If K and L are infinite and metrizable and ℓ ∞ (C(K, X)) ∼ ℓ ∞ (C(L, Y )), then C(K) is isomorphic to C(L).
dc.publisherR. Szwarc
dc.relationColloquium Mathematicum
dc.rightsAcesso restrito
dc.subjectC(K, X) spaces
dc.subjectℓ ∞ -sums of Banach spaces
dc.titleComplementations in C(K, X) AND ℓ ∞ (X)
dc.typeArtigo


Este ítem pertenece a la siguiente institución