dc.contributor | http://lattes.cnpq.br/6975165037874387 | |
dc.creator | Candido, Leandro [UNIFESP] | |
dc.date.accessioned | 2023-07-05T17:22:56Z | |
dc.date.accessioned | 2023-09-04T18:25:14Z | |
dc.date.available | 2023-07-05T17:22:56Z | |
dc.date.available | 2023-09-04T18:25:14Z | |
dc.date.created | 2023-07-05T17:22:56Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unifesp.br/11600/68457 | |
dc.identifier | DOI: 10.4064/cm8868-10-2022 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8614415 | |
dc.description.abstract | We investigate the geometry of C(K, X) and ℓ ∞ (X) spaces through complemented subspaces of the form ( i∈Γ X i ) c 0 . For Banach spaces X and Y , we prove
that if ℓ ∞ (X) has a complemented subspace isomorphic to c 0 (Y ), then, for some n ∈ N,
X n has a subspace isomorphic to c 0 (Y ). If K and L are Hausdorff compact spaces and
X and Y are Banach spaces having no subspace isomorphic to c 0 we further prove the
following:
(1) If C(K) ∼ c 0 (C(K)) and C(L) ∼ c 0 (C(L)) and ℓ ∞ (C(K, X)) ∼ ℓ ∞ (C(L, Y )), then
K and L have the same cardinality.
(2) If K and L are infinite and metrizable and ℓ ∞ (C(K, X)) ∼ ℓ ∞ (C(L, Y )), then C(K)
is isomorphic to C(L). | |
dc.publisher | R. Szwarc | |
dc.relation | Colloquium Mathematicum | |
dc.rights | Acesso restrito | |
dc.subject | C(K, X) spaces | |
dc.subject | ℓ ∞ -sums of Banach spaces | |
dc.title | Complementations in C(K, X) AND ℓ ∞ (X) | |
dc.type | Artigo | |