dc.contributor | Senise Júnior, Carlos Roberto [UNIFESP] | |
dc.contributor | http://lattes.cnpq.br/2404397064540723 | |
dc.contributor | http://lattes.cnpq.br/7710810700275382 | |
dc.creator | Santana, Hércules de Souza [UNIFESP] | |
dc.date.accessioned | 2022-11-29T17:07:30Z | |
dc.date.accessioned | 2023-09-04T18:10:18Z | |
dc.date.available | 2022-11-29T17:07:30Z | |
dc.date.available | 2023-09-04T18:10:18Z | |
dc.date.created | 2022-11-29T17:07:30Z | |
dc.date.issued | 2022-11-28 | |
dc.identifier | https://repositorio.unifesp.br/11600/66008 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8612618 | |
dc.description.abstract | É bem conhecido que o trabalho original de Einstein, referente ao que hoje é conhecido por teoria da relatividade especial, estuda a transformação de variáveis da mecânica clássica. No entanto, Einstein deixa uma questão fundamental a ser discutida: como se transforma a temperatura em um contexto de relatividade específica? A temperatura muda ou é um invariante de Lorentz? Esta revisão bibliográfica mostra que definir uma transformação única para a temperatura ainda é uma discussão aberta na relatividade especial. A literatura sobre ela começa em 1907, e parecia ter terminado em 1967, onde temos três grandes correntes de pensamento. Estas correntes afirmam que a temperatura é transformada da seguinte forma: (T' = T*\gamma^x ), onde a pode ser −1 (corrente de Planck-Einstein), 0 (corrente de Landsberg) ou 1 (corrente de Ott-Arzeliès). Depois de 1968, tentando relacionar a termodinâmica clássica (que não estava completamente bem definida na relatividade especial) e termodinâmica estatística. Levando em conta essa importante relação entre as escalas micro e macro, temos uma série de alternativas “estranhas” que escapam em fatores inteiros de x (valores do tipo: 1/3, −3/2, 2/3, etc.). Essa incapacidade de obter uma definição operacional para temperaturas nos leva a tentar uma redefinição da formulação de temperatura usando relações termodinâmicas puras entre 1968 e 1990, ou ainda, ressignificando o conceito de temperatura no contexto da relatividade especial. Em 1995 encontramos outro caminho, desta vez a lei de transformação da temperatura que depende do ângulo de observação entre os referenciais inerciais. A discussão parece ser encerrada em 2004, com o artigo de Landsberg, que aponta a impossibilidade de encontrar uma transformação única para a temperatura. Entretanto, em 2019, encontramos artigos que revivem a discussão sobre | |
dc.description.abstract | It is well known that Einstein’s original work, referring to what is now known as the special
theory of relativity, studies the transformation of variables in classical mechanics. However,
Einstein leaves a fundamental question to be discussed: how does temperature
change in a context of specific relativity? Does the temperature change or is it a Lorentz
invariant? This literature review shows that defining a unique transformation for temperature
is still an open discussion in special relativity. The literature about her starts in
1907, and seems to have ended in 1967, where we have three main currents of thought.
These currents state that the temperature is transformed in the following way: T′ = Tγa,
where a can be −1 (Planck-Einstein current), 0 (Pinck-Einstein current), Landsberg) or 1
(Ott-Arzeliès chain). After 1968, trying to relate classical thermodynamics (which was
not completely well defined in special relativity) and statistical thermodynamics. Taking
into account this important relationship between the micro and macro scales, we have a
series of “strange” alternatives that escape in integer factors of a (values like: 1/3, −3/2,
2/3, etc.). This inability to obtain an operational definition for temperatures leads us to
try to redefine the temperature formulation using pure thermodynamic relations between
1968 and 1990, or even, re-signifying the concept of temperature in the context of special
relativity. In 1995 we found another path, this time the temperature transformation
law that depends on the angle of observation between the inertial reference frames.
The discussion seems to have ended in 2004, with Landsberg’s article, which points to
the impossibility of finding a single transformation for temperature. However, in 2019,
we found articles that revived the discussion on the subject, pointing to the Ott-Arzeliès
Current. | |
dc.publisher | Universidade Federal de São Paulo | |
dc.rights | Acesso aberto | |
dc.subject | Temperatura | |
dc.subject | Relatividade restrita | |
dc.subject | Temperatura relativística | |
dc.subject | Temperature | |
dc.subject | Special relativity | |
dc.subject | Relativistic temperature | |
dc.title | Temperatura na relatividade restrita: uma revisão de literatura | |
dc.type | Trabalho de conclusão de curso de especialização | |