dc.contributorSenise Júnior, Carlos Roberto [UNIFESP]
dc.contributorhttp://lattes.cnpq.br/2404397064540723
dc.contributorhttp://lattes.cnpq.br/7710810700275382
dc.creatorSantana, Hércules de Souza [UNIFESP]
dc.date.accessioned2022-11-29T17:07:30Z
dc.date.accessioned2023-09-04T18:10:18Z
dc.date.available2022-11-29T17:07:30Z
dc.date.available2023-09-04T18:10:18Z
dc.date.created2022-11-29T17:07:30Z
dc.date.issued2022-11-28
dc.identifierhttps://repositorio.unifesp.br/11600/66008
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8612618
dc.description.abstractÉ bem conhecido que o trabalho original de Einstein, referente ao que hoje é conhecido por teoria da relatividade especial, estuda a transformação de variáveis da mecânica clássica. No entanto, Einstein deixa uma questão fundamental a ser discutida: como se transforma a temperatura em um contexto de relatividade específica? A temperatura muda ou é um invariante de Lorentz? Esta revisão bibliográfica mostra que definir uma transformação única para a temperatura ainda é uma discussão aberta na relatividade especial. A literatura sobre ela começa em 1907, e parecia ter terminado em 1967, onde temos três grandes correntes de pensamento. Estas correntes afirmam que a temperatura é transformada da seguinte forma: (T' = T*\gamma^x ), onde a pode ser −1 (corrente de Planck-Einstein), 0 (corrente de Landsberg) ou 1 (corrente de Ott-Arzeliès). Depois de 1968, tentando relacionar a termodinâmica clássica (que não estava completamente bem definida na relatividade especial) e termodinâmica estatística. Levando em conta essa importante relação entre as escalas micro e macro, temos uma série de alternativas “estranhas” que escapam em fatores inteiros de x (valores do tipo: 1/3, −3/2, 2/3, etc.). Essa incapacidade de obter uma definição operacional para temperaturas nos leva a tentar uma redefinição da formulação de temperatura usando relações termodinâmicas puras entre 1968 e 1990, ou ainda, ressignificando o conceito de temperatura no contexto da relatividade especial. Em 1995 encontramos outro caminho, desta vez a lei de transformação da temperatura que depende do ângulo de observação entre os referenciais inerciais. A discussão parece ser encerrada em 2004, com o artigo de Landsberg, que aponta a impossibilidade de encontrar uma transformação única para a temperatura. Entretanto, em 2019, encontramos artigos que revivem a discussão sobre
dc.description.abstractIt is well known that Einstein’s original work, referring to what is now known as the special theory of relativity, studies the transformation of variables in classical mechanics. However, Einstein leaves a fundamental question to be discussed: how does temperature change in a context of specific relativity? Does the temperature change or is it a Lorentz invariant? This literature review shows that defining a unique transformation for temperature is still an open discussion in special relativity. The literature about her starts in 1907, and seems to have ended in 1967, where we have three main currents of thought. These currents state that the temperature is transformed in the following way: T′ = Tγa, where a can be −1 (Planck-Einstein current), 0 (Pinck-Einstein current), Landsberg) or 1 (Ott-Arzeliès chain). After 1968, trying to relate classical thermodynamics (which was not completely well defined in special relativity) and statistical thermodynamics. Taking into account this important relationship between the micro and macro scales, we have a series of “strange” alternatives that escape in integer factors of a (values like: 1/3, −3/2, 2/3, etc.). This inability to obtain an operational definition for temperatures leads us to try to redefine the temperature formulation using pure thermodynamic relations between 1968 and 1990, or even, re-signifying the concept of temperature in the context of special relativity. In 1995 we found another path, this time the temperature transformation law that depends on the angle of observation between the inertial reference frames. The discussion seems to have ended in 2004, with Landsberg’s article, which points to the impossibility of finding a single transformation for temperature. However, in 2019, we found articles that revived the discussion on the subject, pointing to the Ott-Arzeliès Current.
dc.publisherUniversidade Federal de São Paulo
dc.rightsAcesso aberto
dc.subjectTemperatura
dc.subjectRelatividade restrita
dc.subjectTemperatura relativística
dc.subjectTemperature
dc.subjectSpecial relativity
dc.subjectRelativistic temperature
dc.titleTemperatura na relatividade restrita: uma revisão de literatura
dc.typeTrabalho de conclusão de curso de especialização


Este ítem pertenece a la siguiente institución