dc.creator | Balakrishnan, N. | |
dc.creator | Saulo, Helton | |
dc.creator | Bourguignon, Marcelo | |
dc.creator | Zhu, Xiaojun | |
dc.date | 2022-11-08T18:46:52Z | |
dc.date | 2022-11-08T18:46:52Z | |
dc.date | 2017 | |
dc.date.accessioned | 2023-09-04T13:34:35Z | |
dc.date.available | 2023-09-04T13:34:35Z | |
dc.identifier | BALAKRISHNAN, N.; et al. On moment-type estimators for a class of log-symmetric distributions. Computacional Statistics, v. 32, p. 1339-1355, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00180-017-0722-6. Acesso em: 07 dez. 2017. | |
dc.identifier | https://repositorio.ufrn.br/handle/123456789/49679 | |
dc.identifier | 10.1007/s00180-017-0722-6 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8602498 | |
dc.description | In this paper, we propose three simple closed form estimators for a class
of log-symmetric distributions on R+. The proposed methods make use of some key
properties of this class of distributions.We derive the asymptotic distributions of these
estimators. The performance of the proposed estimators are then compared with those
of themaximum likelihood estimators through MonteCarlo simulations. Finally, some
illustrative examples are presented to illustrate the methods of estimation developed
here. | |
dc.language | en | |
dc.publisher | Computacional Statistics | |
dc.rights | Acesso Aberto | |
dc.subject | Asymptotic normality | |
dc.subject | Hodges–Lehmann estimator | |
dc.subject | Log-symmetric distributions | |
dc.subject | Maximum likelihood estimator | |
dc.subject | Moment estimator | |
dc.subject | Modified moment estimator | |
dc.title | On moment-type estimators for a class of log-symmetric distributions | |
dc.type | article | |