dc.creatorMorales, Fidel Castro
dc.creatorLima Neto, Eufrásio de Andrade
dc.date2022-10-11T20:14:16Z
dc.date2022-10-11T20:14:16Z
dc.date2014
dc.date.accessioned2023-09-04T12:35:55Z
dc.date.available2023-09-04T12:35:55Z
dc.identifierMORALES, Fidel Castro; LIMA NETO, Eufrásio de Andrade. A bayesian approach for modeling interval-valued varaiables. Revista Brasileira de Biometria, São Paulo, v. 32, p. 360, 2014. Disponível em:http://jaguar.fcav.unesp.br/RME/fasciculos/v32/v32_n3/indice_v32_n3.php. Acesso em: 06 dez. 2017
dc.identifier0102-0811
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/49551
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8601372
dc.descriptionThis paper proposes two Bayesian approaches to estimate the regression model coefficients considering interval-valued variables as response and explanatory variables. The first approach considers a more simple co-variance structure, while the second approach supposes a more general co-variance structure. The posterior distribution for the parameters was approximated considering Markov Chain Monte Carlo method (MCMC). A simulation study is presented and suggests the effectiveness of the sampling scheme in recovering the true values of the parameters and also indicates convergence of the parameter estimate algorithm. The new approaches are applied to real interval-valued data sets and their performance compared.
dc.formatapplication/pdf
dc.languagept_BR
dc.publisherRevista Brasileira de Biometria
dc.rightsAcesso Aberto
dc.subjectInterval variables
dc.subjectRegression
dc.subjectMCMC
dc.subjectBayesian approach
dc.titleA bayesian approach for modeling interval-valued variables
dc.typearticle


Este ítem pertenece a la siguiente institución