dc.creatorBourguignon, Marcelo
dc.date2022-10-31T20:10:44Z
dc.date2022-10-31T20:10:44Z
dc.date2016
dc.date.accessioned2023-09-04T12:32:36Z
dc.date.available2023-09-04T12:32:36Z
dc.identifierBOURGUIGNON, Marcelo. Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica, v. 70, p. 176-192, 2016. Disponível em:<http://onlinelibrary.wiley.com/doi/10.1111/stan.12082/abstract>. Acesso em: 07 dez. 2017
dc.identifier0039-0402
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/49654
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8601163
dc.descriptionIn this paper, we propose a new first-order non-negative integervalued autoregressive [INAR(1)] process with Poisson–geometric marginals based on binomial thinning for modeling integer-valued time series with overdispersion. Also, the new process has, as a particular case, the Poisson INAR(1) and geometric INAR(1) processes. The main properties of the model are derived, such as probability generating function, moments, conditional distribution, higher-order moments, and jumps. Estimators for the parameters of process are proposed, and their asymptotic properties are established. Some numerical results of the estimators are presented with a discussion of the obtained results. Applications to two real data sets are given to show the potentiality of the new process.
dc.languageen
dc.publisherStatistica Neerlandica
dc.rightsAcesso Aberto
dc.subjectPoisson distribution
dc.subjectGeometric distribution
dc.subjectInteger-valued time series
dc.subjectEstimation
dc.subjectAsymptotic normality
dc.titlePoisson–geometric INAR(1) process for modeling count time series with overdispersion
dc.typearticle


Este ítem pertenece a la siguiente institución