dc.creatorAraújo, Mariana C.
dc.creatorCysneiros, Audrey H. M. A.
dc.creatorMontenegro, Lourdes C.
dc.date2023-01-16T19:21:41Z
dc.date2023-01-16T19:21:41Z
dc.date2017-07
dc.date.accessioned2023-09-04T12:25:15Z
dc.date.available2023-09-04T12:25:15Z
dc.identifierARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/50959
dc.identifier10.1007/s00362-017-0933-5
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8600668
dc.descriptionIn this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application.
dc.formatapplication/pdf
dc.languageen
dc.publisherSpringer
dc.rightsAcesso Aberto
dc.subjectBartlett correction
dc.subjectBootstrap
dc.subjectLikelihood ratio test
dc.subjectModified profile likelihood ratio test
dc.titleImproved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
dc.typearticle


Este ítem pertenece a la siguiente institución