dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorVillarreal, F.
dc.date2014-05-20T13:30:52Z
dc.date2016-10-25T16:49:46Z
dc.date2014-05-20T13:30:52Z
dc.date2016-10-25T16:49:46Z
dc.date2006-02-01
dc.date.accessioned2017-04-05T20:17:38Z
dc.date.available2017-04-05T20:17:38Z
dc.identifierIntegral Transforms and Special Functions. Abingdon: Taylor & Francis Ltd, v. 17, n. 2-3, p. 213-219, 2006.
dc.identifier1065-2469
dc.identifierhttp://hdl.handle.net/11449/10509
dc.identifierhttp://acervodigital.unesp.br/handle/11449/10509
dc.identifier10.1080/10652460500438128
dc.identifierWOS:000237603600021
dc.identifierhttp://dx.doi.org/10.1080/10652460500438128
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/858409
dc.descriptionThe purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationIntegral Transforms and Special Functions
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectgeneralized functions
dc.subjectHeaviside generalized functions
dc.subjectshock wave solutions
dc.titleHeaviside generalized functions and shock waves for a Burger kind equation
dc.typeOtro


Este ítem pertenece a la siguiente institución