dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorSeixack, A. L.
dc.creatorBarbazelli, M. R.
dc.date2014-05-20T13:29:28Z
dc.date2016-10-25T16:48:49Z
dc.date2014-05-20T13:29:28Z
dc.date2016-10-25T16:48:49Z
dc.date2009-02-01
dc.date.accessioned2017-04-05T20:14:07Z
dc.date.available2017-04-05T20:14:07Z
dc.identifierApplied Thermal Engineering. Oxford: Pergamon-Elsevier B.V. Ltd, v. 29, n. 2-3, p. 523-531, 2009.
dc.identifier1359-4311
dc.identifierhttp://hdl.handle.net/11449/9947
dc.identifierhttp://acervodigital.unesp.br/handle/11449/9947
dc.identifier10.1016/j.applthermaleng.2008.03.012
dc.identifierWOS:000264532800041
dc.identifierhttp://dx.doi.org/10.1016/j.applthermaleng.2008.03.012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/857961
dc.descriptionThis work presents a numerical model to simulate steady state refrigerant now along capillary tube-suction line heat exchangers. commonly used in small refrigeration systems. The flow along the straight and horizontal capillary tube is divided into two regions: a single-phase and a two-phase flow region. The flow is taken as one-dimensional and the metastable flow phenomenon is neglected. The two-fluid model is employed for the two-phase flow region, considering the hydrodynamic and the thermodynamic non-equilibrium between the liquid and vapor phases. Comparisons are made with experimental measurements of the mass flow rate and temperature distribution along capillary tube-suction line heat exchangers working with refrigerant R134a in different operating conditions. The results indicate that the present model provides a good estimation of the refrigerant mass flow rate. Moreover, comparisons with a homogeneous model are also made. Some computational results referring to the quality, void fraction and velocities of each phase are also presented and discussed. (C) 2008 Elsevier Ltd. All rights reserved.
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationApplied Thermal Engineering
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNon-adiabatic capillary tube
dc.subjectTwo-fluid model
dc.subjectComputer modeling
dc.titleNumerical analysis of refrigerant flow along non-adiabatic capillary tubes using a two-fluid model
dc.typeOtro


Este ítem pertenece a la siguiente institución