dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLopes, MLM
dc.creatorMinussi, C. R.
dc.creatorLotufo, ADP
dc.date2014-05-20T13:29:02Z
dc.date2016-10-25T16:48:30Z
dc.date2014-05-20T13:29:02Z
dc.date2016-10-25T16:48:30Z
dc.date2005-01-01
dc.date.accessioned2017-04-05T20:12:46Z
dc.date.available2017-04-05T20:12:46Z
dc.identifierApplied Soft Computing. Amsterdam: Elsevier B.V., v. 5, n. 2, p. 235-244, 2005.
dc.identifier1568-4946
dc.identifierhttp://hdl.handle.net/11449/9740
dc.identifierhttp://acervodigital.unesp.br/handle/11449/9740
dc.identifier10.1016/j.asoc.2004.07.003
dc.identifierWOS:000227208700008
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2004.07.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/857802
dc.descriptionThis work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Soft Computing
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectadaptive resonance theory
dc.subjectelectric load forecasting
dc.subjectelectric power systems
dc.subjectneural networks
dc.subjectfuzzy logic
dc.subjectfuzzy ART&ARTMAP neural network
dc.titleElectric load forecasting using a fuzzy ART&ARTMAP neural network
dc.typeOtro


Este ítem pertenece a la siguiente institución