dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorde Moraes, Rodolpho Vilhena
dc.creatorSantos Cabette, Regina Elaine
dc.creatorZanardi, Maria Cecilia
dc.creatorStuchi, Teresinha J.
dc.creatorFormiga, Jorge Kennety
dc.date2014-05-20T13:27:57Z
dc.date2016-10-25T16:47:48Z
dc.date2014-05-20T13:27:57Z
dc.date2016-10-25T16:47:48Z
dc.date2009-08-01
dc.date.accessioned2017-04-05T20:10:05Z
dc.date.available2017-04-05T20:10:05Z
dc.identifierCelestial Mechanics & Dynamical Astronomy. Dordrecht: Springer, v. 104, n. 4, p. 337-353, 2009.
dc.identifier0923-2958
dc.identifierhttp://hdl.handle.net/11449/9275
dc.identifierhttp://acervodigital.unesp.br/handle/11449/9275
dc.identifier10.1007/s10569-009-9216-3
dc.identifierWOS:000268295400002
dc.identifierhttp://dx.doi.org/10.1007/s10569-009-9216-3
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/857455
dc.descriptionThe stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque, using a canonical formulation, and Andoyer's variables to describe the rotational motion. The stability criteria employed requires the reduction of the Hamiltonian to a normal form around the stable equilibrium points. These points are determined through a numerical study of the Hamilton's equations of motion and linear study of their stability. Subsequently a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system resulting in a normalized quadratic Hamiltonian. A semi-analytic process of normalization based on Lie-Hori algorithm is applied to obtain the Hamiltonian normalized up to the fourth order. Lyapunov stability of the equilibrium point is performed using Kovalev and Savchenko's theorem. This semi-analytical approach was applied considering some data sets of hypothetical satellites, and only a few cases of stable motion were observed. This work can directly be useful for the satellite maintenance under the attitude stability requirements scenario.
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherSpringer
dc.relationCelestial Mechanics & Dynamical Astronomy
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRotational motion of artificial satellites
dc.subjectNon linear stability
dc.subjectNormalization
dc.titleAttitude stability of artificial satellites subject to gravity gradient torque
dc.typeOtro


Este ítem pertenece a la siguiente institución