dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorCoronado, Christian Rodriguez
dc.creatorde Carvalho, Joao Andrade
dc.creatorYoshioka, Juliana Tiyoko
dc.creatorSilveira, Jose Luz
dc.date2014-05-20T13:27:30Z
dc.date2016-10-25T16:47:27Z
dc.date2014-05-20T13:27:30Z
dc.date2016-10-25T16:47:27Z
dc.date2009-07-01
dc.date.accessioned2017-04-05T20:08:41Z
dc.date.available2017-04-05T20:08:41Z
dc.identifierApplied Thermal Engineering. Oxford: Pergamon-Elsevier B.V. Ltd, v. 29, n. 10, p. 1887-1892, 2009.
dc.identifier1359-4311
dc.identifierhttp://hdl.handle.net/11449/9063
dc.identifierhttp://acervodigital.unesp.br/handle/11449/9063
dc.identifier10.1016/j.applthermaleng.2008.10.012
dc.identifierWOS:000265465100001
dc.identifierhttp://dx.doi.org/10.1016/j.applthermaleng.2008.10.012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/857273
dc.descriptionThis paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationApplied Thermal Engineering
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEcological efficiency
dc.subjectEngine
dc.subjectBiodiesel
dc.subjectVehicular fuels
dc.subjectCombustion
dc.titleDetermination of ecological efficiency in internal combustion engines: The use of biodiesel
dc.typeOtro


Este ítem pertenece a la siguiente institución