dc.contributorPinto, José Roberto Rodrigues
dc.contributorMatricardi, Eraldo Aparecido Trondoli
dc.creatorCosta, Adyne Cardoso da
dc.date.accessioned2023-01-09T21:59:20Z
dc.date.accessioned2023-09-01T00:58:54Z
dc.date.available2023-01-09T21:59:20Z
dc.date.available2023-09-01T00:58:54Z
dc.date.created2023-01-09T21:59:20Z
dc.date.issued2023-01-09
dc.identifierCOSTA, Adyne Cardoso da. Predição da biomassa usando redes neurais artificiais e sensoriamento remoto em Florestas na Amazônia. 2022. 59 f., il. Dissertação (Mestrado em Ciências Florestais) — Universidade de Brasília, Brasília, 2022.
dc.identifierhttps://repositorio.unb.br/handle/10482/45463
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8570665
dc.description.abstractAs florestas tropicais estocam quantidade muito significativa de carbono orgânico em sua biomassa aérea e subterrânea. A mensuração da biomassa florestal é uma atividade laboriosa e demanda muito tempo e recursos financeiros para sua implementação. Portanto, tem sido crescente o interesse de muitos pesquisadores em desenvolver novas técnicas para quantificar a biomassa em ecossistemas naturais. No presente estudo, desenvolveu-se um modelo para a estimativa da biomassa florestal acima do solo (BFAS) em florestas tropicais a partir de dados de sensoriamento remoto e redes neurais artificiais ajustados e validados com base em dados de campo. Quatro índices de vegetação, derivados de imagens do Satélite Landsat-5 TM, foram testados e avaliados estatisticamente em suas correlações com a biomassa obtida do inventário florestal. Os resultados indicaram os índices de vegetação Normalized Difference Vegetation Index (NDVI) e Aerosol Free Vegetation Index (AFRI) como os melhores em desempenho na estimativa da BFAS. A partir daí foram treinadas 286 RNAs usando como dados de entrada o NDVI, o AFRI e a estratificação da área em duas fitofisionomias – Floresta Ombrófila Densa de Terras Baixas e Floresta Ombrófila Densa Sub-montana. A seleção da RNA mais adequada foi feita segundo os critérios da análise gráfica do erro residual e do coeficiente de correlação do modelo. Por fim, a validação da RNA selecionada foi feita a partir da análise dos resultados do teste t de Student e da diferença agregada entre os valores preditos pela rede neural e os valores observados para as parcelas de validação. Assim, este estudo indica que o uso de dados de sensoriamento remoto associados a redes neurais artificiais possibilita a estimativa com precisão da biomassa florestal acima do solo em florestas tropicais.
dc.languagePortuguês
dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
dc.rightsAcesso Aberto
dc.titlePredição da biomassa usando redes neurais artificiais e sensoriamento remoto em Florestas na Amazônia
dc.typeDissertação


Este ítem pertenece a la siguiente institución