dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Bertussi, P. R. | |
dc.creator | Silva Neto, M. B. | |
dc.creator | Rappoport, T. G. | |
dc.creator | Malvezzi, André Luiz | |
dc.creator | dos Santos, R. R. | |
dc.date | 2014-05-20T13:26:26Z | |
dc.date | 2014-05-20T13:26:26Z | |
dc.date | 2011-08-15 | |
dc.date.accessioned | 2017-04-05T20:05:36Z | |
dc.date.available | 2017-04-05T20:05:36Z | |
dc.identifier | Physical Review B. College Pk: Amer Physical Soc, v. 84, n. 7, p. 9, 2011. | |
dc.identifier | 1098-0121 | |
dc.identifier | http://hdl.handle.net/11449/8521 | |
dc.identifier | 10.1103/PhysRevB.84.075156 | |
dc.identifier | WOS:000293830800007 | |
dc.identifier | WOS000293830800007.pdf | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevB.84.075156 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/856876 | |
dc.description | We have used the density-matrix renormalization group method to study the ground-state properties of the symmetric periodic Anderson model in one dimension. We have considered lattices with up to N-s = 50 sites, and electron densities ranging from quarter to half filling. Through the calculation of energies, correlation functions, and their structure factors, together with careful extrapolations (toward N-s -> infinity), we were able to map out a phase diagram U vs n, where U is the electronic repulsion on f orbitals, and n is the electronic density, for a fixed value of the hybridization. At quarter filling, n = 1, our data is consistent with a transition at U-c1 similar or equal to 2, between a paramagnetic (PM) metal and a spin-density-wave (SDW) insulator; overall, the region U less than or similar to 2 corresponds to a PM metal for all n < 2. For 1 < n less than or similar to 1.5 a ferromagnetic phase is present within a range of U, while for 1.5 less than or similar to n < 2, we find an incommensurate SDW phase; above a certain U-c(n), the system displays a Ruderman-Kittel-Kasuya-Yosida behavior, in which the magnetic wave vector is determined by the occupation of the conduction band. At half filling, the system is an insulating spin liquid, but with a crossover between weak and strong magnetic correlations. | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation | Physical Review B | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.title | Incommensurate spin-density-wave and metal-insulator transition in the one-dimensional periodic Anderson model | |
dc.type | Otro | |