dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMarar, João Fernando
dc.creatorCoelho, Helder
dc.date2014-05-20T13:25:59Z
dc.date2014-05-20T13:25:59Z
dc.date2008-01-01
dc.date.accessioned2017-04-05T20:04:13Z
dc.date.available2017-04-05T20:04:13Z
dc.identifierBiosignals 2008: Proceedings of The First International Conference on Bio-inspired Systems and Signal Processing, Vol Ii. Setubal: Insticc-inst Syst Technologies Information Control & Communication, p. 261-268, 2008.
dc.identifierhttp://hdl.handle.net/11449/8307
dc.identifierWOS:000256983100044
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/856700
dc.descriptionWavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
dc.languageeng
dc.publisherInsticc-inst Syst Technologies Information Control & Communication
dc.relationBiosignals 2008: Proceedings of The First International Conference on Bio-inspired Systems and Signal Processing, Vol Ii
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectartificial neural network
dc.subjectfunction approximation
dc.subjectpolynomial powers of sigmoid (PPS)
dc.subjectwavelets functions
dc.subjectPPS-Wavelet neural networks
dc.subjectactivation functions
dc.subjectfeedforward networks
dc.titleMultidimensional polynomial powers of sigmoid (PPS) Wavelet neural networks
dc.typeOtro


Este ítem pertenece a la siguiente institución