dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMessias, Marcelo
dc.date2014-05-20T13:23:32Z
dc.date2016-10-25T16:44:31Z
dc.date2014-05-20T13:23:32Z
dc.date2016-10-25T16:44:31Z
dc.date2012-05-01
dc.date.accessioned2017-04-05T19:57:47Z
dc.date.available2017-04-05T19:57:47Z
dc.identifierDiscrete and Continuous Dynamical Systems. Springfield: Amer Inst Mathematical Sciences, v. 32, n. 5, p. 1881-1899, 2012.
dc.identifier1078-0947
dc.identifierhttp://hdl.handle.net/11449/7106
dc.identifierhttp://acervodigital.unesp.br/handle/11449/7106
dc.identifier10.3934/dcds.2012.32.1881
dc.identifierWOS:000299997100021
dc.identifierhttp://dx.doi.org/10.3934/dcds.2012.32.1881
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/855877
dc.descriptionWe study periodic perturbations of planar quadratic vector fields having infinite heteroclinic cycles, consisting of an invariant straight line joining two saddle points at infinity and an arc of orbit also at infinity. The global study concerning the infinity of the perturbed system is performed by means of the Poincare compactification in polar coordinates, from which we obtain a system defined on a set equivalent to a solid torus in R-3, whose boundary plays the role of the infinity. It is shown that for certain type of periodic perturbation, there exist two differentiable curves in the parameter space for which the perturbed system presents heteroclinic tangencies and transversal intersections between the stable and unstable manifolds of two normally hyperbolic lines of singularities at infinity. The transversality of the manifolds is proved using the Melnikov method and implies, via the Birkhoff-Smale Theorem, in a complex dynamical behavior of the perturbed system solutions in a finite part of the phase space. Numerical simulations are performed for a particular example in order to illustrate this behavior, which could be called the chaos arising from infinity, because it depends on the global structure of the quadratic system, including the points at infinity.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageeng
dc.publisherAmer Inst Mathematical Sciences
dc.relationDiscrete and Continuous Dynamical Systems
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectQuadratic system
dc.subjectinfinite heteroclinic cycle
dc.subjectperiodic perturbation
dc.subjectPoincare compactification
dc.subjectheteroclinic bifurcation
dc.subjectchaotic dynamics
dc.titlePERIODIC PERTURBATION of QUADRATIC SYSTEMS WITH TWO INFINITE HETEROCLINIC CYCLES
dc.typeOtro


Este ítem pertenece a la siguiente institución