dc.creatorKamphorst, Samuel Henrique
dc.creatorAmaral J?nior, Ant?nio Teixeira do
dc.creatorVergara-Diaz, Omar
dc.creatorGracia-Romero, Adrian
dc.creatorFernandez-Gallego, Jose A.
dc.creatorChang-Espino, Melissa Carolina
dc.creatorBuchaillot, Maria Luisa
dc.creatorRezzouk, Fatima Zahra
dc.creatorLima, Valter J?rio de
dc.creatorSerret, Maria Dolores
dc.creatorOrtega, Jose Luis Araus
dc.date2022-08-30T20:33:01Z
dc.date2022-08-30T20:33:01Z
dc.date2022-01-03
dc.date.accessioned2023-08-31T19:22:25Z
dc.date.available2023-08-31T19:22:25Z
dc.identifieramphorst S.H., Amaral J?nior A.T.D., Vergara-Diaz O., Gracia-Romero A., Fernandez-Gallego J.A., Chang-Espino M.C., Buchaillot M.L., Rezzouk F.Z., Lima V.J.D., Serret M.D., Ortega J.L.A. (2022). Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants und
dc.identifier0378-3774
dc.identifierhttps://www.sciencedirect.com/science/article/pii/S037837742100648X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8557538
dc.descriptionIn spite of the benefits of heterosis in maize breeding, little is known about the physiological mechanisms of this phenomenon and its genetic control under different water regimes. This study aimed to understand the heterosis effects on plant growth, the photosynthetic and transpiration traits, and the root traits of four inbred popcorn lines and their hybrids, including their reciprocal combinations. Plants were grown in lysimeters, inside a rain shelter, under two water conditions (water stress ? WS; well-watered ? WW) until anthesis. Plant growth traits included shoot biomass, plant height, and leaf area. Photosynthetic traits comprised leaf pigment and total nitrogen content, chlorophyll fluorescence, gas exchange, water use efficiency and stomatal index and density, along with the stable carbon (?13C) and nitrogen (?15N) isotope compositions of the last developed leaf. Root weight density and specific root length were also recorded. Greater heterosis effects were observed for traits related to plant growth and root weight density, and specifically under WS. Traits related to root weight density in deeper soil layers benefited markedly from heterosis, but there were no advantages in terms of stomatal conductance and water status in general. Apparently, only ?13C supported a better water status under WS, and was observed in the hybrids in particular. Non-additive gene effects were predominant in controlling of most of the growth and root traits studied, supporting the conclusion that the heterosis effect is especially favorable under water-limiting conditions. Moreover, the choice of the female parent is essential for traits related to gas exchange when breeding for better resilience to drought.
dc.descriptionUniversidad de Ibagu?
dc.languageen
dc.publisherAgricultural Water Management
dc.subjectGas exchange
dc.subjectGrowth
dc.subjectHeterosis
dc.subjectStable carbon isotope composition
dc.subjectWater stress
dc.subjectRoot traits
dc.subjectZea mays L. Everta
dc.titleHeterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions
dc.typeArticle


Este ítem pertenece a la siguiente institución