dc.creatorForero Vargas, Manuel Guillermo
dc.creatorHerrera-Rivera, Sergio
dc.creatorCandia-Garc?a, Cristian
dc.date2019-05-23T14:21:40Z
dc.date2019-05-23T14:21:40Z
dc.date2019-03-03
dc.date.accessioned2023-08-31T19:15:16Z
dc.date.available2023-08-31T19:15:16Z
dc.identifierCandia-Garc?a C., Forero M.G., Herrera-Rivera S. (2019) Generating Random Variates via Kernel Density Estimation and Radial Basis Function Based Neural Networks. In: Vera-Rodriguez R., Fierrez J., Morales A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science, vol 11401. Springer, Cham
dc.identifier0302-9743
dc.identifierhttps://link.springer.com/chapter/10.1007/978-3-030-13469-3_29
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8556755
dc.descriptionWhen modeling phenomena that cannot be studied by deterministic analytical approaches, one of the main tasks is to generate random variates. The widely-used techniques, such as the inverse transformation, convolution, and rejection-acceptance methods, involve a significant amount of statistical work and do not provide satisfactory results when the data do not conform to the known probability density functions. This study aims to propose an alternative nonparametric method for generating random variables that combines kernel density estimation (KDE), and radial basis function based neural networks (RBFBNNs). We evaluate the method?s performance using Poisson, triangular, and exponential probability density distributions and assessed its utility for unknown distributions. The results show that the model?s effectiveness depends substantially on selecting an appropriate bandwidth value for KDE and a certain minimum number of data points to train the algorithm. the proposed method enabled us to achieve an R2 value between 0.91 and 0.99 for analyzed distributions.
dc.languageen
dc.publisherLecture Notes in Computer Science
dc.subjectGeneral regression neural network
dc.subjectProbabilistic neural network
dc.subjectKernel density estimation
dc.subjectRandom variable
dc.subjectProbability distribution
dc.titleGenerating Random Variates via Kernel Density Estimation and Radial Basis Function Based Neural Networks
dc.typeArticle


Este ítem pertenece a la siguiente institución