dc.creatorCeretani, Andrea Noemí
dc.creatorSalva, Natalia Nieves
dc.creatorTarzia, Domingo Alberto
dc.date.accessioned2023-07-04T14:17:33Z
dc.date.accessioned2023-08-31T17:27:31Z
dc.date.available2023-07-04T14:17:33Z
dc.date.available2023-08-31T17:27:31Z
dc.date.created2023-07-04T14:17:33Z
dc.identifier0096-3003
dc.identifierhttp://rdi.uncoma.edu.ar/handle/uncomaid/17308
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8554850
dc.description.abstractIn this article, we obtain explicit approximations of the modified error function introduced in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent thermal conductivity. This function depends on a parameter δ, which is related to the ther- mal conductivity in the original phase-change process. We propose a method to obtain ap- proximations, which is based on the assumption that the modified error function admits a power series representation in δ. Accurate approximations are obtained through functions involving error and exponential functions only. For the special case in which δassumes small positive values, we show that the modified error function presents some character- istic features of the classical error function, such as monotony, concavity, and boundedness. Moreover, we prove that the modified error function converges to the classical one when δgoes to zero.
dc.publisherElsevier
dc.relationhttps://doi.org/10.1016/j.amc.2018.05.054
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Argentina
dc.sourceApplied Mathematics and Computation. Vol. 337 (2018)
dc.subjectModified Error Function
dc.subjectError Function
dc.subjectPhase-change problem
dc.subjectTemperature-dependent Thermal
dc.subjectConductivity
dc.subjectNonlinear Second Order Ordinary Differential Equation
dc.titleApproximation of the modified error function
dc.typeArticulo
dc.typearticle
dc.typeacceptedVersion


Este ítem pertenece a la siguiente institución