dc.contributorChamorro, Ester R.
dc.contributorMoheimani, Navid R.
dc.creatorCuello, María Carolina
dc.date2021-05-28T13:14:57Z
dc.date2021-05-28T13:14:57Z
dc.date2020
dc.date.accessioned2023-08-31T14:18:06Z
dc.date.available2023-08-31T14:18:06Z
dc.identifierhttp://hdl.handle.net/20.500.12272/5181
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8547183
dc.descriptionHoy en día, nos enfrentamos ya a una importante escasez de agua dulce, lo que amenaza la sostenibilidad del desarrollo humano, las estimaciones indican que la demanda mundial de agua dulce aumentará en un 55% para 2050, principalmente debido a la creciente demanda en las actividades de manufactura (400%), la generación de electricidad térmica (140%) y el uso doméstico (130%) (FAO 2012). Por otra parte, la gran cantidad de líquidos residuales de origen agrícola-ganadero y las aguas residuales de ciudades en crecimiento, están contaminando los cursos de agua más rápidamente de lo que la naturaleza puede remediarlas (Abdel-Raouf, Al- Homaidan et al. 2012). Las microalgas, microorganismos unicelulares, fotosintéticos, eucarióticos y procarióticos, que pueden crecer en una amplia variedad de condiciones, tienen mayor eficiencia que las plantas terrestres para la captación de dióxido de carbono y el aprovechamiento de la luz solar, por lo que tienen una mayor productividad en términos de biomasa y metabolitos y, además pueden metabolizar eficientemente los nutrientes de varias corrientes de efluentes (aguas residuales municipales, agrícolas e industriales) y producir numerosos compuestos valiosos como proteínas, carbohidratos y lípidos. En este trabajo se evaluó la viabilidad del cultivo de las microalgas Scenedesmus dimorphus y Chlorella pyrenoidosa, solas y consociadas con la bacteria promotora del crecimiento de plantas Azospirillum brasilense, en mezclas de Suero Ácido de Queso y Purín Vacuno y, la proporción de estas dos corrientes de aguas residuales en las que simultáneamente se logran las mejores tasas de remoción de nutrientes y la mayor producción de bioproductos (biomasa, metabolitos de interés comercial) en cultivos abiertos al exterior. En primer lugar, se realizó la selección o screening en condiciones controladas de laboratorio para seleccionar las condiciones más convenientes para el crecimiento de las microalgas Scenedesmus dimorphus y Chlorella pyrenoidosa, en Purín Vacuno y Suero Ácido de Queso. Luego se evaluó la capacidad de remoción de nutrientes por parte del cultivo de las microalgas en consorcio con la bacteria promotora del crecimiento Azospirillum brasilense, la productividad volumétrica de biomasa algal y la composición bioquímica de dicha biomasa (es decir, el contenido de carbohidratos, lípidos y proteínas) para los cultivos. vi Finalmente se estudió el co-cultivo en modo semicontinuo, en estanques abiertos al exterior, en las condiciones optimizadas. Se encontró que las microalgas fotoautotróficas Scenedesmus dimorphus y Chlorella pyrenoidosa se adaptan y crecen en los efluentes de la industria láctea, a saber, Purín Vacuno y Suero Ácido de Queso. La opacidad del Purín Vacuno, su alto contenido en nitrógeno amoniacal, el alto contenido de sólidos suspendidos totales, así como el bajo pH del Suero Ácido de Queso y el rápido descenso del mismo por acción de las bacterias lácticas cuando el efluente no es esterilizado ni diluido, y su bajo contenido de nitrógeno en relación al fósforo (Relación N:P 1,8:1) en comparación con la proporción óptima para el crecimiento microalgal (Relación óptima N:P 16:1) (Redfield 1958), son los principales factores que retrasan el crecimiento de Scenedesmus dimorphus y Chlorella pyrenoidosa en los mismos. El resultado óptimo de crecimiento microalgal y depuración simultáneas, se alcanzó en mezclas de 50% Purín Vacuno y 50% Suero Ácido de Queso (v/v). Los consorcios Scenedesmus dimorphus-Azospirillum brasilense y Chlorella pyrenoidosa-Azospirillum brasilense fueron estudiados por primera vez consociados de manera programada sin estar co-inmovilizados en microcápsulas de alginato, en este estudio. Los resultados indican que el consorcio Chlorella pyrenoidosa- Azospirillum brasilense, es de beneficio para el crecimiento de la microalga, sobre todo en condiciones adversas al exterior. Esto no ocurre para Scenedesmus dimorphus en consorcio con la misma bacteria. Además, esta microalga mostró una escasa tolerancia a bajos pH y altas temperaturas y, sobre todo, inhabilidad para competir con Chlorella pyrenoidosa en las condiciones cambiantes de los cultivos al exterior. En resumen, este estudio muestra que es posible cultivar Chlorella pyrenoidosa exitosamente y ésta, consociada con una bacteria promotora de crecimiento o sin ella, es capaz de crecer en efluentes de la industria láctea, tales como el Purín Vacuno y el Suero Ácido de Queso, sin esterilizar, ni diluir, ni agregar nutrientes, lo que además de remover contaminantes de los mismos, disminuye la huella hídrica, de carbono y energética, de un cultivo tradicional de microalgas. Además, los extractivos lipídicos de la biomasa algal obtenida, contienen biomoléculas de alto valor agregado que justifican su aislamiento de la biomasa algal tanto o más que las grasas y aceites a los cuales acompañan.
dc.descriptionFil: Cuello, María Carolina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Dirección de Posgrado; Argentina.
dc.formatapplication/pdf
dc.languagespa
dc.relationAbbott, D. and A. R. S. (1970). Introducción a la cromatografía. Madrid, Alhambra.
dc.relationAbdel-Raouf, N., A. A. Al-Homaidan and I. B. Ibraheem (2012). "Microalgae and wastewater treatment." Saudi Journal of Biological Sciences 19(3): 257-275.
dc.relationAbed, R. M. M. (2010). "Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons." International Biodeterioration & Biodegradation 64(1): 58-64.
dc.relationAbeliovich, A. and Y. Azov (1976). "Toxicity of ammonia to algae in sewage oxidation ponds. Applied and Environmental Microbiology 31(6): 801-806.
dc.relationAcuner, E. and F. B. Dilek (2004). "Treatment of tectilon yellow 2G by Chlorella vulgaris." Process Biochemistry 39(5): 623-631.
dc.relationAdey, W. H. and L. Hackney (1989). The composition and production of tropical marine algal turf in laboratory and field experiments. The biology, ecology and mariculture of Mithrax spinossimus utilizing cultural algal turfs. D. F. Farrier. Los Ángeles, California, The Mariculture Institute: 1-80.
dc.relationAhmad Latiffi, N. A., R. M. S. Radin Mohamed, N. M. Apandi and R. M. Tajuddin (2017). "Experimental assessment on effects of growth rates microalgae Scenedesmus sp. in different conditions of pH, temperature, light intensity and photoperiod." Key Engineering Materials 744: 546-551.
dc.relationAmavizca, E., Y. Bashan, C.-M. Ryu, M. A. Farag, B. M. Bebout and L. E. de-Bashan (2017). "Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus." Scientific Reports 7(1):41310.
dc.relationAndersson, A., P. Haecky and Å. Hagström (1994). "Effect of temperature and light on the growth of micro- nano- and pico-plankton: impact on algal succession." Marine Biology 120(4): 511-520.
dc.relationAPHA (2012). Standard methods for the examination of water and wastewater. American Public Health Association, 22 edition.
dc.relationAravindhan, R., J. R. Rao and B. U. Nair (2007). "Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis." Journal of Hazardous Materials 142(1): 68-76.
dc.relationAult, A. (1998). Chromatography. Techniques and experiments for organic chemistry. U. S. Books. U.S. 6th. ed.: 109-136.
dc.relationAyre, J. M., N. R. Moheimani and M. A. Borowitzka (2017). "Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations." Algal Research 24, Part A: 218-226.
dc.relationAzov, Y. (1982). "Effect of pH on inorganic carbon uptake in algal cultures." Applied and Environmental Microbiology 43(6): 1300.
dc.relationAzov, Y. and G. Shelef (1987). "The effect of pH on the performance of high-rate oxidation ponds." Water Science and Technology 19(12): 381-383.
dc.relationBarlow, E., L. Boersma, H. Phinney and J. Miner (1975). "Algal growth in diluted pig waste." Agriculture and Environment 2(4): 339-355.
dc.relationBarsanti, L. and P. Gualtieri (2006). Algae: Anatomy, Biochemistry, and Biotechnology. Boca Ratón, Florida, CRC Press.
dc.relationBashan, Y. (1998). "Inoculants of plant growth-promoting bacteria for use in agriculture." Biotechnology Advances 16(4): 729-770.
dc.relationBashan, Y., G. Holguin and R. Lifshitz (1993). Isolation and characterization of plant growthpromoting Rhizobacteria. Methods in plant molecular biology and biotechnology. B. R. Glick and J. E. Thompson. Boca Raton, Florida, CRC Press: 331-345.
dc.relationBecker, E. W. (2007). "Micro-algae as a source of protein." Biotechnology Advances 25(2): 207-210.
dc.relationBehrens, P. W. (2005). Photobioreactors and fermentors: The light and dark sides of growing algae. Algal culturing techniques. R. A. Andersen, Elsevier Academic Press: 189-204.
dc.relationBen Amotz, A., T. G. Tornabene and W. H. Thomas (1985). "Chemical profile of selected species of microalgae with emphasis on lipids." Journal of Phycology 21(1): 72-81.
dc.relationBharathiraja, B., M. Chakravarthy, R. Ranjith Kumar, D. Yogendran, D. Yuvaraj, J. Jayamuthunagai, R. Praveen Kumar and S. Palani (2015). "Aquatic biomass (algae) as a future feed stock for biorefineries: a review on cultivation, processing and products." Renewable and Sustainable Energy Reviews 47(0): 634-653.
dc.relationBhatnagar, A., S. Chinnasamy, M. Singh and K. C. Das (2011). "Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters." Applied Energy 88(10): 3425-3431.
dc.relationBorowitzka, M. (2005). Culturing microalgae in outdoor ponds. Algal culturing techniques. R. A. Andersen, Elsevier Academic Press: 205-218.
dc.relationBorowitzka, M. A. (1992). "Algal biotechnology products and processes — matching science and economics." Journal of Applied Phycology 4(3): 267-279.
dc.relationBorowitzka, M. A. (1994). Products from algae. Algal Biotechnology in the Asia-Pacific Region. P. S.M., L. K., B. M.A. and W. B. Kuala Lumpur, Institute of Advanced Studies, University of Malaya. 1: 5-15.
dc.relationBorowitzka, M. A. (1998). Limits to growth. Wastewater treatment with algae. Y.-S. Wong and N. Y. Tam, Springer Berlin Heidelberg: 203-226.
dc.relationBorowitzka, M. A. (2008). "Marine and halophilic algae for the production of biofuels." Journal of Biotechnology 136, Supplement: S7.
dc.relationBorowitzka, M. A. and N. R. Moheimani (2013). Open pond culture systems. Algae for Biofuels and Energy. M. A. Borowitzka and N. R. Moheimani, Springer Netherlands. 5: 133-152.
dc.relationBorowitzka, M. A. and N. R. Moheimani (2013). "Sustainable biofuels from algae." Mitigation and Adaptation Strategies for Global Change 18(1): 13-25.
dc.relationBozkir, A. and O. M. Saka (2005). "Formulation and investigation of 5-FU nanoparticles with factorial design-based studies." Il Farmaco 60(10): 840-846.
dc.relationBurlew, J. S. (1953). Algal culture: From laboratory to pilot plant. Washington, DC, Carnegie Institution of Washington.
dc.relationButler, A. (1998). "Acquisition and utilization of transition metal ions by marine organisms." Science 281(5374): 207-210.
dc.relationCampbel, P. G. C. and P. M. Stokes (1985). "Acidification and toxicity of metals to aquatic biota." Canadian Journal of Fisheries and Aquatic Sciences 42(12): 2034-2049.
dc.relationCarvalho, A., C. Monteiro and F. Malcata (2009). "Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri." Journal of Applied Phycology 21: 543-552.
dc.relationCorcoran, A. A. and W. J. Boeing (2012). "Biodiversity increases the productivity and stability of phytoplankton communities." PLOS ONE 7(11): e49397.
dc.relationCraggs, R. J., P. J. McAuley and V. J. Smith (1997). "Wastewater nutrient removal by marine microalgae grown on a corrugated raceway." Water Research 31(7): 1701-1707.
dc.relationCroft, M. T., M. J. Warren and A. G. Smith (2006). "Algae need their vitamins." Eukaryot Cell 5(8): 1175-1183.
dc.relationCumby, T. R., A. J. Brewer and S. J. Dimmock (1999). "Dirty water from dairy farms, I: biochemical characteristics." Bioresource Technology 67(2): 155-160.
dc.relationCurtis, P. J. and R. O. Megard (1987). "Interactions among irradiance, oxygen evolution and nitrite uptake by Chlamydomonas (Chlorophyceae)." Journal of Phycology 23(4): 608-613.
dc.relationChen, C.-Y., X.-Q. Zhao, H.-W. Yen, S.-H. Ho, C.-L. Cheng, D.-J. Lee, F.-W. Bai and J.-S. Chang (2013). "Microalgae-based carbohydrates for biofuel production." Biochemical Engineering Journal 78.
dc.relationChen, J.-J., Y.-R. Li, M.-Z. Xie, C.-Y. Chiu, S.-W. Liao and W.-L. Lai (2012). "Factorial design of experiment for biofuel production by Isochrysis galbana." International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE) 33: 91-95.
dc.relationCheung, Y. H. and M. H. Wong (1981). "Properties of animal manures and sewage sludges and their utilisation for algal growth." Agricultural Wastes 3(2): 109-122.
dc.relationChinnasamy, S., A. Bhatnagar, R. W. Hunt and K. C. Das (2010). "Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications." Bioresource Technology 101(9): 3097-3105.
dc.relationChisti, Y. (2007). "Biodiesel from microalgae." Biotechnology Advances 25(3): 294-306.
dc.relationCho, D.-H., R. Ramanan, J. Heo, J. Lee, B.-H. Kim, H.-M. Oh and H.-S. Kim (2015). "Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community." Bioresource Technology 175: 578-585.
dc.relationChristenson, L. and R. Sims (2011). "Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts." Biotechnology Advances 29(6): 686-702.
dc.relationDagnino, E., C. Medina, M. Beligni and E. Chamorro (2014). "Evaluación de lípidos extraídos de microalgas Nannochloropsis oculata para la producción de biodiesel." Revista Tecnología y Ciencia, Universidad Tecnológica Nacional 26(1): 87-92.
dc.relationDavison, I. R. (1991). "Environmental effects on algal photosynthesis: temperature." Journal of Phycology 27(1): 2-8.
dc.relationDe-Bashan, L. E., H. Antoun and Y. Bashan (2008). "Involvement of indol-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris." Journal of Phycology 44(4): 938-947.
dc.relationde-Bashan, L. E. and Y. Bashan (2010). "Immobilized microalgae for removing pollutants: review of practical aspects." Bioresource Technology 101(6): 1611-1627.
dc.relationde-Bashan, L. E., Y. Bashan, M. Moreno, V. K. Lebsky and J. J. Bustillos (2002). "Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense." Canadian Journal of Microbiology 48(6): 514-521.
dc.relationde-Bashan, L. E., M. Moreno, J.-P. Hernandez and Y. Bashan (2002). "Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense." Water Research 36(12): 2941-2948.
dc.relationde la Noue, J. and N. de Pauw (1988). "The potential of microalgal biotechnology: a review of production and uses of microalgae." Biotechnology Advances 6(4): 725-770.
dc.relationDifusa, A., J. Talukdar, M. C. Kalita, K. Mohanty and V. V. Goud (2015). "Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species." Biofuels 6(1-2): 37-44.
dc.relationDixon, R. K. (2013). "Algae based biofuels." Mitigation and Adaptation Strategies for Global Change 18(1): 1-4.
dc.relationDobbelaere, S., A. Croonenborghs, A. Thys, A. Vande Broek and J. Vanderleyden (1999). "Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat." Plant and Soil 212(2): 153-162.
dc.relationDöbereiner, J., V. L. D. Baldani and J. I. Baldani (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Brasília, Embrapa-SPI.
dc.relationDoble, M. and A. Kumar (2005). Biotreatment of Industrial Effluents. Burlington, MA, USA, Elsevier/Butterworth-Heinemann.
dc.relationDOE, U. S. (2010). National algal biofuels technology roadmap. Biomass Program. United States, Department of Energy. Report No.: DOE/EE-0332.
dc.relationDorsey, T. E., P. McDonald and O. A. Roels (1978). "Measurements of phytoplankton-protein content with the heated biuret-Folin assay." Journal of Phycology 14(2): 167-171.
dc.relationEarthscan (2007). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Map 2: Areas of physical and economic water scarcity. London, International Water Management Institute.
dc.relationFábregas, J., A. Maseda, A. Domínguez and A. Otero (2004). "The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture." World Journal of Microbiology and Biotechnology 20(1): 31-35.
dc.relationFallowfield, H. J. and M. K. Garrett (1985). "The photosynthetic treatment of pig slurry in temperate climatic conditions: A pilot-plant study." Agricultural Wastes 12(2): 111-136.
dc.relationFAO (2012). Coping with water scarcity. An action framework for agriculture and food security. FAO Water Reports. Rome.
dc.relationFAO, IFAD and WFP (2015). The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO. Rome.
dc.relationFAO/AQUASTAT. (2016). "Municipal wastewater production, collection, treatment and use database. AQUASTAT Main Database. Food and Agriculture Organization of the United Nations." (FAO) Retrieved 2016/07/10.
dc.relationFarizoglu, B., B. Keskinler, E. Yildiz and A. Nuhoglu (2007). "Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR)." Journal of Hazardous Materials 146(1-2):399-407.
dc.relationFenton, O. and D. Ó hUallacháin (2012). "Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review." Algal Research 1(1): 49-56.
dc.relationFogg, G. E. (2001). Algal adaptation to stress -some general remarks. Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. L. C. Rai and J. P. Gaur. Berlin, Heidelberg, Springer Berlin Heidelberg: 1-19.
dc.relationFolch, J., M. Lees and G. H. Sloane Stanley (1957). "A simple method for the isolation and purification of total lipides from animal tissues." Journal of Biological Chemistry 226(1): 497-509.
dc.relationGarcía Cubero, R. (2014). Producción de biomasa de microalgas rica en carbohidratos acoplada a la eliminación fotosintética de CO2. PhD Tesis Doctoral, Repositorio de la Universidad de Sevilla. http://hdl.handle.net/11441/56164.
dc.relationGerloff-Elias, A., E. Spijkerman and T. Pröschold (2005). "Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6)." Plant, Cell & Environment 28(10): 1218-1229.
dc.relationGimmler, H. (2001). Acidophilic and acidotolerant algae. Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanisms. L. C. Rai and J. P. Gaur. Berlin, Heidelberg, Springer Berlin Heidelberg: 259-290.
dc.relationGirard, J.-M., M.-L. Roy, M. B. Hafsa, J. Gagnon, N. Faucheux, M. Heitz, R. Tremblay and J.-S. Deschênes (2014). "Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production." Algal Research 5: 241-248.
dc.relationGoldman, J. C., Y. Azov, C. B. Riley and M. R. Dennett (1982). "The effect of pH in intensive microalgal cultures. I. Biomass regulation." Journal of Experimental Marine Biology and Ecology 57(1): 1-13.
dc.relationGoldman, J. C. and P. M. Glibert (1982). "Comparative rapid ammonium uptake by four species of marine phytoplankton." Limnology and Oceanography 27(5): 814-827.
dc.relationGoldman, J. C., C. B. Riley and M. R. Dennett (1982). "The effect of pH in intensive microalgal cultures. II. Species competition." Journal of Experimental Marine Biology and Ecology 57(1): 15-24.
dc.relationGoldman, J. C. and J. H. Ryther (1976). "Temperature-influenced species competition in mass cultures of marine phytoplankton." Biotechnology and Bioengineering 18(8): 1125-1144.
dc.relationGonzalez-Bashan, L. E., V. K. Lebsky, J. R. Hernández, J. J. Bustillos and Y. Bashan (2000). "Change in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum." Canadian Journal of Microbiology 46: 653-659.
dc.relationGonzalez, L. E. and Y. Bashan (2000). "Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense." Applied and Environmental Microbiology 66(4): 1527-1531.
dc.relationGonzález, M. (2013). Utilización actual del suero de quesería. Centro de Investigaciones Tecnológicas de la Industria Láctea. I. N. d. T. I. (INTI). Buenos Aires.
dc.relationGraham, J., L. Graham and L. Wilcox (2009). Algae. Upper Saddle River, NJ, Prentice Hall.
dc.relationGrobbelaar, J. U. (2000). "Physiological and technological considerations for optimising mass algal cultures." Journal of Applied Phycology 12(3): 201-206.
dc.relationGuedes, A. C., H. M. Amaro and F. X. Malcata (2011). "Microalgae as sources of carotenoids." Marine Drugs 9(4): 625-644.
dc.relationHena, S., S. Fatimah and S. Tabassum (2015). "Cultivation of algae consortium in a dairy farm wastewater for biodiesel production." Water Resources and Industry 10(0): 1-14.
dc.relationHernandez, J.-P., L. E. de-Bashan, D. J. Rodriguez, Y. Rodriguez and Y. Bashan (2009). "Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growthpromoting bacterium Bacillus pumilus from arid zone soils." European Journal of Soil Biology 45(1): 88-93.
dc.relationHesnawi, R., K. Dahmani, A. Al-Swayah, S. Mohamed and S. A. Mohammed (2014). "Biodegradation of municipal wastewater with local and commercial bacteria." Procedia Engineering 70: 810-814.
dc.relationillebrand, H. and U. Sommer (1999). "The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal." Limnology and Oceanography 44: 440–446.
dc.relationHodaifa, G., M. E. Martínez and S. Sánchez (2010). "Influence of temperature on growth of Scenedesmus obliquus in diluted olive mill wastewater as culture medium." ngineering in Life Sciences 10: 257-264.
dc.relationHoffmann, J. P. (1998). "Wastewater treatment with suspended and nonsuspended algae." Journal of Phycology 34(5): 757-763.
dc.relationHoran, N. J. (1990). Biological wastewater treatment systems, theory and operation. Chichester, England, John Wiley and Sons.
dc.relationIEA (2012). Water for Energy, Is Energy Becoming a Thirstier Resource? World Energy Outlook. Paris, France, International Energy Agency.
dc.relationJaime, L., I. Rodríguez-Meizoso, A. Cifuentes, S. Santoyo, S. Suarez, E. Ibáñez and F. J. Señorans (2010). "Pressurized liquids as an alternative process to antioxidant carotenoids' extraction from Haematococcus pluvialis microalgae." LWT-Food Science and Technology 43(1): 105-112.
dc.relationJohnson, K. and W. Admassu (2013). "Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation." Journal of Chemical Technology and Biotechnology 88: 992-998.
dc.relationKang, C. D. and S. J. Sim (2008). "Direct extraction of astaxanthin from Haematococcus culture using vegetable oils." Biotechnology Letters 30(3): 441-444.
dc.relationKang, C. D. and S. J. Sim (2008). "Direct extraction of astaxanthin from Haematococcus culture using vegetable oils." Biotechnology Letters 30(3): 441-444.
dc.relationKay, R. A. (1991). "Microalgae as food and supplement." Critical Reviews in Food Science and Nutrition 30(6): 555-573.
dc.relationKebede-Westhead, E., C. Pizarro and W. W. Mulbry (2004). "Treatment of dairy manure effluent using freshwater algae: elemental composition of algal biomass at different manure loading rates." Journal of agricultural and food chemistry 52(24): 7293-7296.
dc.relationKetchum, B. H. (1939). "The development and restoration of deficiencies in the phosphorus and nitrogen composition of unicellular plants." Journal of Cellular and Comparative Physiology 13(3):373-381.
dc.relationKhalaf, M. A. (2008). "Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp." Bioresource Technology 99(14): 6631-6634.
dc.relationKim, B.-H., R. Ramanan, D.-H. Cho, H.-M. Oh and H.-S. Kim (2014). "Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction." Biomass and Bioenergy 69: 95-105.
dc.relationKlyachko-Gurvich, G. L., L. N. Tsoglin, J. Doucha, J. Kopetskii, I. B. Shebalina and V. E. Semenenko (1999). "Desaturation of fatty acids as an adaptive response to shifts in light intensity." Physiologia Plantarum 107(2): 240-249.
dc.relationKochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Physiological and Biochemical Methods. Handbook of phycological methods. J. Stein. London, Cambridge University Press. 2: 95-97.
dc.relationKothari, R., V. V. Pathak, V. Kumar and D. P. Singh (2012). "Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: An integrated approach for treatment and biofuel production." Bioresource Technology 116(0): 466-470.
dc.relationLaliberté, G., D. Proulx, N. De Pauw and J. de la Noüe (1994). "Algal technology in wastewater treatment." Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 42: 283-302.
dc.relationLarkum, A. W. (2010). "Limitations and prospects of natural photosynthesis for bioenergy production." Current Opinion in Biotechnology 21(3): 271-276.
dc.relationLebsky, V., L. Gonzalez-Bashan and Y. Bashan (2001). "Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense." Canadian Journal of Microbiology 47: 1-8.
dc.relationLee, J., D. H. Cho, R. Ramanan, B. H. Kim, H. M. Oh and H. S. Kim (2013). "Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris." Bioresource Technology 131: 195-201.
dc.relationLee, S.-W., S.-H. Lee, K. Balaraju, K.-S. Park, K.-W. Nam, J.-W. Park and K. Park (2014). "Growth promotion and induced disease suppression of four vegetable crops by a selected plant growthpromoting rhizobacteria (PGPR) strain Bacillussubtilis 21-1 under two different soil conditions." Acta Physiologiae Plantarum 36(6): 1353-1362.
dc.relationLong, S. P., S. Humphries and P. G. Falkowski (1994). "Photoinhibition of photosynthesis in nature." Annual Review of Plant Physiology and Plant Molecular Biology 45(1): 633-662.
dc.relationLowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall (1951). "Protein measurement with the Folin phenol reagent." Journal of Biological Chemistry 193(1): 265-275.
dc.relationMa, X., W. Zhou, Z. Fu, Y. Cheng, M. Min, Y. Liu, Y. Zhang, P. Chen and R. Ruan (2014). "Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system." Bioresource Technology 167: 8-13.
dc.relationMallick, N. (2002). "Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review." Biometals 15(4): 377-390.
dc.relationMara, D. D. and H. Pearson (1986). Artificial freshwater environment: waste stabilization ponds. Biotechnology. H. J. Rehm and G. Reed, Velagsgesellschaft: 177-206.
dc.relationMarré, E. (1962). Temperature. Physiology and biochemistry of algae. R. A. Lewin. New York, Academic Press: 541-550.
dc.relationMarungrueng, K. and P. Pavasant (2006). "Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera." Journal of Environmental Management 78(3): 268-274.
dc.relationMata, T. M., A. A. Martins and N. S. Caetano (2010). "Microalgae for biodiesel production and other applications: A review." Renewable and Sustainable Energy Reviews 14(1): 217-232.
dc.relationMawson, A. J. (1994). "Bioconversions for whey utilization and waste abatement." Bioresource Technology 47(3): 195-203.
dc.relationMenetrez, M. Y. (2012). "An overview of algae biofuel production and potential environmental impact." Environmental Science & Technology 46(13): 7073-7085.
dc.relationMercz, T. (1994). A study of high lipid yielding microalgae with potential for large-scale production of lipids and polyunsaturated fatty acids. PhD Thesis, Murdoch University.
dc.relationMeseck, S. L. (2007). "Controlling the growth of a cyanobacterial contaminant, Synechoccus sp., in a culture of Tetraselmis chui (PLY429) by varying pH: implications for outdoor aquaculture production." Aquaculture 273(4): 566-572.
dc.relationMeseck, S. L., J. H. Alix and G. H. Wikfors (2005). "Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429)." Aquaculture 246(1): 393-404.
dc.relationMeza, B., L. E. de-Bashan and Y. Bashan (2015). "Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris." Research in Microbiology 166(2): 72-83.
dc.relationMing, T. T., K. T. Hyun and J. L. Myun (2007). "Characterization of livestock wastewater at various stages of wastewater treatment plant." Malaysian Journal of Analytical Sciences 11: 23-28.
dc.relationMinisterio de Agricultura, G. y. P., Presidencia de la Nación. (2015). "https://www.agroindustria.gob.ar/sitio/areas/microalgas/." Antena de Vigilancia Tecnológica en Microalgas.
dc.relationMoheimani, N. (2013). "Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp. (Chlorophyta) in bag photobioreactors." Journal of Applied Phycology 25(1): 167-176.
dc.relationMoheimani, N. R., M. A. Borowitzka, A. Isdepsky and S. Fon Sing (2013). Standard methods for measuring growth of algae and their composition. Algae for Biofuels and Energy. M. A. Borowitzka and N. R. Moheimani, Springer Netherlands. 5: 265-284.
dc.relationMoheimani, N. R. and D. Parlevliet (2013). "Sustainable solar energy conversion to chemical and electrical energy." Renewable and Sustainable Energy Reviews 27(0): 494-504.
dc.relationMoss, B. (1973). "The influence of environmental factors on the distribution of freshwater algae: an experimental study: III. effects of temperature, vitamin requirements and inorganic nitrogen compounds on growth." Journal of Ecology 61(1): 179-192.
dc.relationMouget, J.-L., A. Dakhama, M. C. Lavoie and J. de la Noüe (1995). "Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved?" FEMS Microbiology Ecology 18(1):35-43.
dc.relationMuñoz, R. and B. Guieysse (2006). "Algal–bacterial processes for the treatment of hazardous contaminants: A review." Water Research 40(15): 2799-2815.
dc.relationMurray, R., P. Phillips and J. Bender (1997). "Degradation of pesticides applied to banana farm soil: comparison of indigenous bacteria and a microbial mat." Environmental Toxicology and Chemistry 16(1): 84-90.
dc.relationNalewajko, C., B. Colman and M. Olaveson (1997). "Effects of pH on growth, photosynthesis, respiration, and copper tolerance of three Scenedesmus strains." Environmental and Experimental Botany 37(2): 153-160.
dc.relationNatarajan, M. and T. J. Varghese (1980). "Studies on the effects of poultry manure, digested sewage sludge cake and cow-dung on the growth rate of Catla catla (Hamilton) and Cyprinus carpio var.communis (Linneaus)." Agricultural Wastes 2(4): 261-271.
dc.relationNelson, J. R., S. Guarda, L. E. Cowell and P. B. Heffernan (1992). "Evaluation of microalgal clones for mass culture in a subtropical greenhouse bivalve hatchery: growth rates and biochemical composition at 30 °C." Aquaculture 106(3): 357-377.
dc.relationNixdorf, B., H. Krumbeck, J. Jander and C. Beulker (2003). "Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes." Acta Oecologica 24: S281-S288.
dc.relationNwoba, E. G., J. M. Ayre, N. R. Moheimani, B. E. Ubi and J. C. Ogbonna (2016). "Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent." Algal Research 17: 268-276.
dc.relationOECD (2016). OECD-FAO Agricultural Outlook. OECD Agriculture statistics (database): Version 1 - Last updated: 02-Jun-2016.
dc.relationOECD/FAO (2016). OECD-FAO Agricultural Outlook 2016-2025. OECD Publishing. Paris.
dc.relationOlguín, E. J. (2012). "Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery." Biotechnology Advances 30(5): 1031-1046.
dc.relationOsuna, D. O. (2019). "http://www.efluentes.com/."
dc.relationOswald, W. J. (1977). Determinants of feasibility in bioconversion of solar energy. Research in Photobiology. A. Castellani. Boston, MA, Springer US: 371-383.
dc.relationOswald, W. J. (1988a). Large-scale algal culture systems (engineering aspects). Microalgal biotechnology. M. A. Borowitzka and L. J. Borowitzka. Cambridge, Cambridge University Press. 1:357-394.
dc.relationOswald, W. J. (1988b). Micro-algae and waste-water treatment. Microalgal biotechnology. M. A. Borowitzka and L. J. Borowitzka. Cambridge, Cambridge University Press. 1: 305-328.
dc.relationOswald, W. J. (1988c). Role of microalgae in liquid waste treatment and reclamation. Algae and Human Affairs. C. A. Lembi and J. R. Waaland. Cambridge, Cambridge University Press. 1: 255-281.
dc.relationOswald, W. J. (2003). "My sixty years in applied algology." Journal of Applied Phycology 15(2-3):99-106.
dc.relationOswald, W. J. and H. B. Gotaas (1957). "Photosynthesis in sewage treatment." Transactions of the American Society of Civil Engineers 122(1): 73-97.
dc.relationOtero, A. (2014). Tratamiento de efluentes en un tambo comercial. EEA. General Villegas, Instituto Nacional de Tecnología Agropecuaria (INTA).
dc.relationParhad, N. M. and N. U. Rao (1974). "Effect of pH on Survival of Escherichia coli." Journal (Water Pollution Control Federation) 46(5): 980-986.
dc.relationPark, J. B. K., R. J. Craggs and A. N. Shilton (2011). "Wastewater treatment high rate algal ponds for biofuel production." Bioresource Technology 102(1): 35-42.
dc.relationPayer, H. D., Y. Chiemvichak, K. Hosakul, C. Kongpanichkul, L. Kraidej, M. Nguitragul, S. Reungmanipytoon and P. Buri (1980). Temperature as an important climatic factor during mass production of microscopic algae. Algae Biomass. G. Shelef and C. J. Soeder. Amsterdam, Elsevier/North- Holland Biomedical Press. 1: 389-399.
dc.relationPEN (1993). Ley N° 24.051. Residuos peligrosos. Argentina, Poder Ejecutivo Nacional. Ley N° 24.051.
dc.relationPerez-Garcia, O., L. E. De-Bashan, J.-P. Hernandez and Y. Bashan (2010). "Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense." Journal of Phycology 46(4): 800-812.
dc.relationPila, N. A., M. C. Cuello and E. R. Chamorro (2019). "Microalgae lipid extraction within a biorefinery approach (Fractionation)." Applied Biochemistry and Biotechnology (en prensa).
dc.relationPrajapati, S. K., P. Choudhary, A. Malik and V. K. Vijay (2014). "Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm." Bioresource Technology 167(0): 260-268.
dc.relationPrajapati, S. K., P. Kaushik, A. Malik and V. K. Vijay (2013). "Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges." Biotechnology Advances 31(8): 1408-1425.
dc.relationPrazeres, A. R., F. Carvalho and J. Rivas (2012). "Cheese whey management: A review." Journal of Environmental Management 110: 48-68.
dc.relationRamanan, R., Z. Kang, B.-H. Kim, D.-H. Cho, L. Jin, H.-M. Oh and H.-S. Kim (2015). "Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats." Algal Research 8:140-144.
dc.relationRamanan, R., B.-H. Kim, D.-H. Cho, H.-M. Oh and H.-S. Kim (2016). "Algae–bacteria interactions: Evolution, ecology and emerging applications." Biotechnology Advances 34(1): 14-29.
dc.relationRaven, J. A. and R. J. Geider (1988). "Temperature and algal growth." New Phytologist 110(4): 441-461.
dc.relationRawat, I., R. Ranjith Kumar, T. Mutanda and F. Bux (2011). "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production." Applied Energy 88(10): 3411-3424.
dc.relationRedfield, A. C. (1958). "The biological control of chemical factors in the environment." American Scientist 46: 205-221.
dc.relationRenaud, S. M., L.-V. Thinh, G. Lambrinidis and D. L. Parry (2002). "Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures." Aquaculture 211(1): 195-214.
dc.relationRiaño, B., S. Blanco, E. Becares and M. C. García-González (2016). "Bioremediation and biomass harvesting of anaerobic digested cheese whey in microalgal-based systems for lipid production." Ecological Engineering 97: 40-45.
dc.relationRichmond, A. and N. Zou (1999). Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms, Dordrecht, Springer Netherlands.
dc.relationRodic, Z., B. Simonovska, A. Albreht and I. Vovk (2012). "Determination of lutein by highperformance thin-layer chromatography using densitometry and screening of major dietary carotenoids in food supplements." Journal of Chromatography A 1231: 59-65.
dc.relationRodríguez Cáceres, E. A. (1982). "Improved medium for isolation of Azospirillum spp." Applied and Environmental Microbiology 44(4): 990-991.
dc.relationRuiz-Marin, A., L. G. Mendoza-Espinosa and T. Stephenson (2010). "Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater." Bioresource Technology 101(1): 58-64.
dc.relationSemrany, S., L. Favier, H. Djelal, S. Taha and A. Amrane (2012). "Bioaugmentation: Possible solution in the treatment of Bio-Refractory Organic Compounds (Bio-ROCs)." Biochemical Engineering Journal 69: 75-86.
dc.relationServicio Meteorológico Nacional, S. (2018). "Descarga del Catálogo de Datos Abiertos del SMN." Retrieved Consultado por última vez 30/10/2019.
dc.relationSheehan, J., T. Dunahay, J. Benemann and P. Roessler (1998). "A look back at the U.S. Department of Energy's Aquatic Species Program—biodiesel from algae." National Renewable Energy Laboratory Report NREL/TP-580–24190.
dc.relationShimizu, Y. (1993). "Microalgal metabolites." Chemical Reviews 93(5): 1685-1698.
dc.relationSienkiewicz, T. and C.-L. Riedel (1990). Whey and whey utilization. Germany, Verlag Th. Mann.
dc.relationSingh, J. and S. Gu (2010). "Commercialization potential of microalgae for biofuels production." Renewable and Sustainable Energy Reviews 14(9): 2596-2610.
dc.relationSingh, S., B. N. Kate and U. C. Banerjee (2005). "Bioactive compounds from cyanobacteria and microalgae: an overview." Critical Reviews in Biotechnology 25(3): 73-95.
dc.relationSingh, S., B. N. Kate and U. C. Banerjee (2005). "Bioactive compounds from cyanobacteria and microalgae: an overview." Critical Reviews in Biotechnology 25(3): 73-95.
dc.relationSivasubramanian, V. and M. Muthukumaran (2012). "Large scale phycoremediation of oil drilling effluent." Journal of Algal Biomass Utilization 3(4): 5-17.
dc.relationSivasubramanian, V. and M. Muthukumaran (2012). "Large scale phycoremediation of oil drilling effluent." Journal of Algal Biomass Utilization 3(4): 5-17.
dc.relationSpolaore, P., C. Joannis-Cassan, E. Duran and A. Isambert (2006). "Commercial applications of microalgae." Journal of Bioscience and Bioengineering 101(2): 87-96.
dc.relationStein, J. R. (1973). Handbook of phycological methods: physiological and biochemical methods, Cambridge University Press.
dc.relationStritzler, M., A. Diez Tissera, G. Soto and N. Ayub (2018). "Plant growth-promoting bacterium Pseudomonas fluorescens FR1 secrets a novel type of extracellular polyhydroxybutyrate polymerase involved in abiotic stress response in plants." Biotechnology Letters 40(9-10): 1419-1423.
dc.relationSubashchandrabose, S. R., B. Ramakrishnan, M. Megharaj, K. Venkateswarlu and R. Naidu (2011). "Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential." Biotechnology Advances 29(6): 896-907.
dc.relationSuminto, H. K. (1997). "Application of a growth-promoting bacteria for stable mass culture of three marine microalgae." Hydrobiologia 358: 223-230.
dc.relationTao, R., V. Kinnunen, R. Praveenkumar, A.-M. Lakaniemi and J. A. Rintala (2017). "Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge." Journal of Applied Phycology 29(6): 2845-2856.
dc.relationTchobanoglous, G. and F. L. Burton (1991). Wastewater engineering: treatment, disposal, and reuse. New York, McGraw-Hill.
dc.relationTejayadi, S. and M. Cheryan (1995). "Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor." Applied Microbiology and Biotechnology 43(2):242-248.
dc.relationTeoh, M.-L., W.-L. Chu, H. Marchant and S.-M. Phang (2004). "Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae." Journal of Applied Phycology 16(6): 421-430.
dc.relationTerry, K. L., J. Hirata and E. A. Laws (1983). "Light-limited growth of two strains of the marine diatom Phaeodactylum tricornutum Bohlin: Chemical composition, carbon partitioning and the diel periodicity of physiological processes." Journal of Experimental Marine Biology and Ecology 68(3):209-227.
dc.relationThomas, W. H., T. G. Tornabene and J. Weissman (1984). Screening for lipid yielding microalgae: activities for 1983. Final subcontract report, ; Solar Energy Research Inst., Golden, CO (USA): Medium: ED; Size: Pages: 54.
dc.relationThompson, P. A., P. J. Harrison and J. N. C. Whyte (1990). "Influence of irradiance on the fatty acid composition of phytoplankton." Journal of Phycology 26(2): 278-288.
dc.relationTrivedi, J., M. Aila, D. P. Bangwal, S. Kaul and M. O. Garg (2015). "Algae based biorefinery—How to make sense?" Renewable and Sustainable Energy Reviews 47(0): 295-307.
dc.relationTuo, B.-h., J.-b. Yan, B.-a. Fan, Z.-h. Yang and J.-z. Liu (2012). "Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil." Bioresource Technology 107: 55-60.
dc.relationUN (2010). Water Scarcity and Humanitarian Action: Key Emerging Trends and Challenges. Occasional Policy Briefing Series. UN Office for the Coordination of Humanitarian Affairs (OCHA), Policy Development and Studies Branch.
dc.relationUNESCO (2012). Managing water under uncertainty and risk. . The United Nations World Water Development Report 4. Paris, France. 1.
dc.relationUnnithan, V. V., A. Unc and G. B. Smith (2014). "Mini-review: A priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters." Algal Research 4(0): 35-40.
dc.relationVan Den Hende, S., H. Vervaeren and N. Boon (2012). "Flue gas compounds and microalgae:(Bio-)chemical interactions leading to biotechnological opportunities." Biotechnology advances 30(6):1405-1424.
dc.relationVenkata Mohan, S., S. Dahiya, K. Amulya, R. Katakojwala and T. K. Vanitha (2019). "Can circular bioeconomy be fueled by waste biorefineries — A closer look." Bioresource Technology Reports 7:100277.
dc.relationVidyashankar, S. and G. A. Ravishankar (2016). Algae-based bioremediation: bioproducts and biofuels for biobusiness. Bioremediation and Bioeconomy. M. N. V. Prasad, Elsevier: 457-493.
dc.relationVidyashankar, S., K. S. Venu Gopal, V. S. Chauhan, S. P. Muthukumar and R. Sarada (2014). "Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed." Journal of Applied Phycology 27(5): 1871-1879.
dc.relationVílchez, C., I. Garbayo, M. V. Lobato and J. Vega (1997). "Microalgae-mediated chemicals production and wastes removal." Enzyme and Microbial Technology 20(8): 562-572.
dc.relationWalsh, B. P., S. N. Murray and D. T. J. O’Sullivan (2015). "The water energy nexus, an ISO50001 water case study and the need for a water value system." Water Resources and Industry 10(0): 15-28.
dc.relationWang, L., Y. Li, P. Chen, M. Min, Y. Chen, J. Zhu and R. R. Ruan (2010). "Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp." Bioresource Technology 101(8): 2623-2628.
dc.relationWang, L., Y. Li, P. Chen, M. Min, Y. Chen, J. Zhu and R. R. Ruan (2010). "Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp." Bioresource Technology 101(8): 2623-2628.
dc.relationWilkie, A. C. and W. W. Mulbry (2002). "Recovery of dairy manure nutrients by benthic freshwater algae." Bioresource Technology 84(1): 81-91.
dc.relationWoertz, I. (2007). Lipid productivity of algae grown on dairy wastewater as possible feedstock for biodiesel. M.Sc. Thesis, California Polytechnic University.
dc.relationXu, X., Y. Shen and J. Chen (2015). "Cultivation of Scenedesmus dimorphus for C/N/P removal and lipid production." Electronic Journal of Biotechnology 18: 46-50.
dc.relationXu, X., Y. Shen and J. Chen (2015). "Cultivation of Scenedesmus dimorphus for C/N/P removal and lipid production." Electronic Journal of Biotechnology 18: 46-50.
dc.relationZeng, X., X. Guo, G. Su, M. K. Danquah, S. Zhang, Y. Lu, Y. Sun and L. Lin (2015). "Bioprocess considerations for microalgal-based wastewater treatment and biomass production." Renewable and Sustainable Energy Reviews 42(0): 1385-1392.
dc.relationZhao, X., Y. Zhou, S. Huang, D. Qiu, L. Schideman, X. Chai and Y. Zhao (2014). "Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production." Bioresource Technology 156(0): 322-328.
dc.relationZhou, Q., P. Zhang, G. Zhang and M. Peng (2015). "Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of photoperiod." Bioresource Technology 190:196-200.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsCuello, María Carolina
dc.rightsNo comercial solo de uso académico.
dc.subjectMicroalgas
dc.subjectAzospirillum
dc.subjectEfluentes
dc.subjectPurín vacuno
dc.subjectSuero ácido
dc.titleEvaluación de la biorremediación de efluentes industriales/municipales con consorcios de microalgas-bacterias promotoras del crecimiento, aprovechando la biomasa generada para producir compuestos orgánicos de alto valor agregado
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeacceptedVersion


Este ítem pertenece a la siguiente institución