dc.creatorSánchez, Jorge
dc.creatorRedolfi, Javier
dc.date2019-09-10T20:20:09Z
dc.date2019-09-10T20:20:09Z
dc.date2015-07-01
dc.date.accessioned2023-08-31T14:08:41Z
dc.date.available2023-08-31T14:08:41Z
dc.identifierSánchez, J., & Redolfi, J. (2015). Exponential family Fisher vector for image classification. Pattern Recognition Letters, 59, 26-32.
dc.identifier0167-8655
dc.identifierhttp://hdl.handle.net/20.500.12272/3972
dc.identifierhttps://doi.org/10.1016/j.patrec.2015.03.010
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8546172
dc.descriptionOne of the fundamental problems in image classification is to devise models that allow us to relate the images to higher-level semantic concepts in an efficient and reliable way. A widely used approach consists on extracting local descriptors from the images and to summarize them into an image-level representation. Within this framework, the Fisher vector (FV) is one of the most robust signatures to date. In the FV, local descriptors are modeled as samples drawn from a mixture of Gaussian pdfs. An image is represented by a gradient vector characterizing the distributions of samples w.r.t. the model. Equipped with robust features like SIFT, the FV has shown state-of-the-art performance on different recognition problems. However, it is not clear how it should be applied when the feature space is clearly non-Euclidean, leading to heuristics that ignore the underlying structure of the space. In this paper we generalize the Gaussian FV to a broader family of distributions known as the exponential family. The model, termed exponential family Fisher vectors (eFV), provides a unified framework from which rich and powerful representations can be derived. Experimental results show the generality and flexibility of our approach.
dc.descriptionFil: Sánchez, Jorge (1,2); Redolfi, Javier Andrés (3) (1) CONICET, Haya de la Torre S/N, Ciudad Universitaria, Córdoba, X5016ZAA, Argentina. (2) Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina. (3) CIII, UTN Facultad Regional Córdoba, Córdoba, X5016ZAA, Argentina.
dc.descriptionPeer Reviewed
dc.formatapplication/pdf
dc.languageeng
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.subjectimage classification
dc.subjectFisher kernel
dc.subjectFisher vectors
dc.subjectexponential family
dc.titleExponential family Fisher vector for image classification
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/draft
dc.typeinfo:ar-repo/semantics/artículo
dc.coverageInternacional


Este ítem pertenece a la siguiente institución