dc.creatorRottoli, Giovanni Daián
dc.creatorMerlino, Hernán Daniel
dc.creatorGarcía Martínez, Ramón
dc.date2018-12-05T01:30:42Z
dc.date2018-12-05T01:30:42Z
dc.date2018
dc.date.accessioned2023-08-31T14:03:08Z
dc.date.available2023-08-31T14:03:08Z
dc.identifierRecent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science 10868: 57-68 (2018)
dc.identifierhttp://hdl.handle.net/20.500.12272/3309
dc.identifierhttps://doi.org/10.1007/978-3-319-92058-0_6
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8545653
dc.descriptionDetection of spatial outliers is a spatial data mining task aimed at discovering data observations that differ from other data observations within its spatial neighborhood. Some considerations that depend on the problem domain and data characteristics have to be taken into account for the selection of the data mining algorithms to be used in each data mining project. This massive amount of possible algorithm combinations makes it necessary to design a knowledge discovery process for detection of local spatial outliers in order to perform this activity in a standardized way. This work provides a proposal for this knowledge discovery process based on the Knowledge Discovery in Database process (KDD) and a proof of concept of this design using real world data.
dc.descriptionFil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina.
dc.descriptionFil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina.
dc.descriptionFil: García Martinez, Ramón. Universidad Nacional de Lanús; Argentina. CIC Bs As; Argentina
dc.descriptionFil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina.
dc.descriptionFil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina.
dc.descriptionPeer Reviewed
dc.formatapplication/pdf
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsRottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martinez, Ramón
dc.rightsNo comercial con fines académicos
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.subjectSpatial outliers
dc.subjectLocal outliers
dc.subjectSpatial data mining
dc.subjectKnowledge discovery process
dc.subjectSpatial clustering
dc.titleKnowledge discovery process for detection of spatial outliers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:ar-repo/semantics/artículo


Este ítem pertenece a la siguiente institución