dc.creatorKondic, L.
dc.creatorKramar, M.
dc.creatorPugnaloni, Luis
dc.creatorCarlevaro, Manuel
dc.creatorMischaikow, K.
dc.date2018-05-14T13:52:07Z
dc.date2018-05-14T13:52:07Z
dc.date2016
dc.date.accessioned2023-08-31T13:59:46Z
dc.date.available2023-08-31T13:59:46Z
dc.identifierPhysical Review
dc.identifierhttp://hdl.handle.net/20.500.12272/2829
dc.identifier10.1103/PhysRevE.93.062903
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8545284
dc.descriptionIn the companion paper [Pugnaloni et al., Phys. Rev. E 93, 062902 (2016)], we use classical measures based on force probability density functions (PDFs), as well as Betti numbers (quantifying the number of components, related to force chains, and loops), to describe the force networks in tapped systems of disks and pentagons. In the present work, we focus on the use of persistence analysis, which allows us to describe these networks in much more detail. This approach allows us not only to describe but also to quantify the differences between the force networks in different realizations of a system, in different parts of the considered domain, or in different systems. We show that persistence analysis clearly distinguishes the systems that are very difficult or impossible to differentiate using other means. One important finding is that the differences in force networks between disks and pentagons are most apparent when loops are considered: the quantities describing properties of the loops may differ significantly even if other measures (properties of components, Betti numbers, force PDFs, or the stress tensor) do not distinguish clearly or at all the investigated systems.
dc.descriptionFil: Kondic, L. New Jersey Institute of Technology. Department of Mathematical Sciences; USA
dc.descriptionFil: Kramar, M. Rutgers University. Department of Mathematics; USA
dc.descriptionFil: Pugnaloni, Luis. UTN (Universidad Tecnológica Nacional). Departamento de Ingeniería Mecánica. GMG. CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas); Argentina
dc.descriptionFil: Carlevaro, Manuel. UTN (Universidad Tecnológica Nacional). Facultad Regional Buenos Aires. UDB Física. CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas); Argentina
dc.descriptionFil: Mischaikow, K. Rutgers University. Department of Mathematics; USA
dc.descriptionPeer Reviewed
dc.formatapplication/pdf
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationhttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.062903
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución (Attribution): En cualquier explotación de la obra autorizada por la licencia será necesario reconocer la autoría (obligatoria en todos los casos). No comercial (Non Commercial): La explotación de la obra queda limitada a usos no comerciales. Sin obras derivadas (No Derivate Works): La autorización para explotar la obra no incluye la posibilidad de crear una obra derivada (traducciones, adaptaciones, etc.).
dc.subjectforce networks; tapped; particulate systems; disks; pentagons; Persistence analysis
dc.titleStructure of force networks in tapped particulate systems of disks and pentagons II Persistence analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:ar-repo/semantics/artículo


Este ítem pertenece a la siguiente institución