dc.creatorMarelli, Damian Edgardo
dc.creatorSui, Tianju
dc.creatorFu, Minyue
dc.date2021-08
dc.date.accessioned2023-08-31T00:37:01Z
dc.date.available2023-08-31T00:37:01Z
dc.identifierhttp://hdl.handle.net/11336/182875
dc.identifierMarelli, Damian Edgardo; Sui, Tianju; Fu, Minyue; Distributed Kalman estimation with decoupled local filters; Pergamon-Elsevier Science Ltd; Automatica; 130; 109724; 8-2021; 1-11
dc.identifier0005-1098
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8543613
dc.descriptionWe study a distributed Kalman filtering problem in which a number of nodes cooperate without central coordination to estimate a common state based on local measurements and data received from neighbors. This is typically done by running a local filter at each node using information obtained through some procedure for fusing data across the network. A common problem with existing methods is that the outcome of local filters at each time step depends on the data fused at the previous step. We propose an alternative approach to eliminate this error propagation. The proposed local filters are guaranteed to be stable under some mild conditions on certain global structural data, and their fusion yields the centralized Kalman estimate. The main feature of the new approach is that fusion errors introduced at a given time step do not carry over to subsequent steps. This offers advantages in many situations including when a global estimate is only needed at a rate slower than that of measurements or when there are network interruptions. If the global structural data can be fused correctly asymptotically, the stability of local filters is equivalent to that of the centralized Kalman filter. Otherwise, we provide conditions to guarantee stability and bound the resulting estimation error. Numerical experiments are given to show the advantage of our method over other existing alternatives.
dc.descriptionFil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Guangdong University Of Technology; China
dc.descriptionFil: Sui, Tianju. Dalian University Of Technology; China
dc.descriptionFil: Fu, Minyue. Universidad de Newcastle; Australia
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2021.109724
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0005109821002442
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subjectESTIMATION THEORY
dc.subjectKALMAN FILTERS
dc.subjectNETWORKED CONTROL SYSTEMS
dc.subjectSENSOR NETWORKS
dc.subjectSTABILITY ANALYSIS
dc.subjectSTATISTICAL ANALYSIS
dc.subjecthttps://purl.org/becyt/ford/2.2
dc.subjecthttps://purl.org/becyt/ford/2
dc.titleDistributed Kalman estimation with decoupled local filters
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución