dc.creatorDorella, Jonathan Jesus
dc.creatorVolpe, Nahuel José
dc.creatorStorti, Bruno Alberto
dc.creatorAlbanesi, Alejandro Eduardo
dc.creatorZeitler, Federico E.
dc.date2023-01
dc.date.accessioned2023-08-30T23:41:44Z
dc.date.available2023-08-30T23:41:44Z
dc.identifierhttp://hdl.handle.net/11336/204289
dc.identifierDorella, Jonathan Jesus; Volpe, Nahuel José; Storti, Bruno Alberto; Albanesi, Alejandro Eduardo; Zeitler, Federico E.; An automatic parallel scheme to design an augmented hydrokinetic river turbine using a simulation-based optimization approach; Pergamon-Elsevier Science Ltd; Ocean Engineering; 268; 113374; 1-2023; 1-14
dc.identifier0029-8018
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8542694
dc.descriptionThe effect of diffuser-enhanced flow on the energy extraction performance of hydrokinetic turbines is widely reported in the literature. In this context, this work combines automatic scripting for geometry construction and meshing, together with a simulation-based approach using particle-swarm optimization with Computational Fluid Dynamics (CFD) to design an augmented hydrokinetic river turbine (HKRT). The goal is to achieve an increase in mass flow in the throat of the diffuser and then to design an ad-hoc set of rotor blades. The optimization is performed in two separate stages: Continuous optimization for the diffuser and discrete optimization for the rotor blades. The complex shape of the rotor blades in terms of the chord, twist, and thickness distribution was parametrized with second-order Bezier curves, which facilitates the correlation between the blade's shape and its performance, proving to be more intuitive to the experienced designer. Furthermore, a novel search and discrete arrangement of feasible design variables are proposed, which allows for reducing the computational costs of this large optimization problem. Results show that the optimized diffuser achieved a flow rate increase of 279%, and the ad-hoc 1.5 [m] in diameter rotor delivers a power of 11.98 [kW] with an efficiency of 0.3385%.
dc.descriptionFil: Dorella, Jonathan Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina
dc.descriptionFil: Volpe, Nahuel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.descriptionFil: Storti, Bruno Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina
dc.descriptionFil: Albanesi, Alejandro Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina
dc.descriptionFil: Zeitler, Federico E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0029801822026579
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.oceaneng.2022.113374
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subjectBEZIER CURVES
dc.subjectCFD
dc.subjectDIFFUSER
dc.subjectHYDROKINETIC TURBINE
dc.subjectPARTICLE SWARM OPTIMIZATION
dc.subjecthttps://purl.org/becyt/ford/2.3
dc.subjecthttps://purl.org/becyt/ford/2
dc.titleAn automatic parallel scheme to design an augmented hydrokinetic river turbine using a simulation-based optimization approach
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución