dc.creator | Bottazzi, Tamara Paula | |
dc.creator | Conde, Cristian Marcelo | |
dc.creator | Feki, Kais | |
dc.date | info:eu-repo/date/embargoEnd/2023-10-04 | |
dc.date | 2021-10 | |
dc.date.accessioned | 2023-08-30T16:48:53Z | |
dc.date.available | 2023-08-30T16:48:53Z | |
dc.identifier | Bottazzi, T., Conde, C. y Feki, K. (2021). On A-Parallelism and A-Birkhoff James Orthogonality of Operators. Results Math 76, 209. | |
dc.identifier | 1422-6383 | |
dc.identifier | http://rid.unrn.edu.ar/handle/20.500.12049/8719 | |
dc.identifier | https://doi.org/10.1007/s00025-021-01515-1 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8538069 | |
dc.description | Fil: Bottazzi, Tamara Paula. Universidad Nacional de Río Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada. Río Negro, Argentina. | |
dc.description | Fil: Conde, Cristian Marcelo. Instituto de Ciencias, Universidad Nacional de General Sarmiento | |
dc.description | Fil: Feki, Kais. Laboratory Physics-Mathematics and Applications (LR/13/ES-22), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia | |
dc.description | In this paper, we establish several characterizations of the A-parallelism of bounded linear operators with respect to the semi-norm induced by a positive operator A acting on a complex Hilbert space. Among other things, we investigate the relationship between A- seminorm-parallelism and A-Birkhoff-James orthogonality of A-bounded operators. In particular, we characterize A-bounded operators which satisfy the A-Daugavet equation. In addition, we relate the A-Birkhoff- James orthogonality of operators and distance formulas and we give an explicit formula of the center mass for A-bounded operators. Some other related results are also discussed | |
dc.description | true | |
dc.description | En este artículo, establecemos varias caracterizaciones del A-paralelismo de operadores lineales acotados respecto de la seminorma inducida por un operador positivo A que actúa sobre un espacio de Hilbert complejo. Entre otras cosas, investigamos la relación entren A-paralelismo en seminorma y A- ortogonalidad Birkhoff-James de operadores A-acotados. En particular, caracterizamos operadores A-acotados que satisfacen la ecuación A-Daugavet. Además, relacionamos A- ortogonalidad Birkhoff-James de operadores y fórmulas de distancia y dame una fómrula explícita del centro de masa de operadores A-acotados. | |
dc.format | application/pdf | |
dc.language | en | |
dc.publisher | Springer Birkhauser Verlag Basel | |
dc.relation | https://www.springer.com/journal/25 | |
dc.relation | 76 | |
dc.relation | Results in Mathematics | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Ciencias Exactas y Naturales | |
dc.subject | Positive operator | |
dc.subject | Numerical radius | |
dc.subject | Orthogonality | |
dc.subject | Parallelism | |
dc.subject | Ciencias Exactas y Naturales | |
dc.title | On A-Parallelism and A-Birkhoff James Orthogonality of Operators | |