dc.creatorRubino, Jorge G.
dc.creatorCastromán, Gabriel A.
dc.creatorMüller, Tobias M.
dc.creatorMonachesi, Leonardo B.
dc.creatorZyserman, Fabio I.
dc.creatorHolliger, Klaus
dc.date2015-04
dc.date.accessioned2023-08-30T16:39:29Z
dc.date.available2023-08-30T16:39:29Z
dc.identifierRubino, Jorge G., Castromán, Gabriel A., Müller, Tobias M., Monachesi, Leonardo B., Zyserman, Fabio I. & et al. (2015). Including poroelastic effects in the linear slip theory. Society of Exploration Geophysicists; Geophysics; 80; 2; 51-56
dc.identifier0016-8033
dc.identifierhttps://library.seg.org/doi/10.1190/geo2014-0409.1
dc.identifierhttp://hdl.handle.net/11336/53573
dc.identifierhttps://rid.unrn.edu.ar/jspui/handle/20.500.12049/2873
dc.identifierhttps://dx.doi.org/10.1190/geo2014-0409.1
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8534530
dc.descriptionFil: Rubino, Jorge G. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.descriptionFil: Rubino, Jorge G. Universite de Lausanne; Suiza
dc.descriptionFil: Castromán, Gabriel A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.descriptionFil: Castromán, Gabriel A. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
dc.descriptionFil: Müller, Tobias M. Commonwealth Scientific and Industrial Research Organization; Australia
dc.descriptionFil: Monachesi, Leonardo B. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.descriptionFil: Monachesi, Leonardo B. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
dc.descriptionFil: Zyserman, Fabio I. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.descriptionFil: Zyserman, Fabio I. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
dc.descriptionFil: Holliger, Klaus. Universite de Lausanne; Suiza
dc.descriptiontrue
dc.descriptionNumerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.
dc.formatapplication/pdf
dc.languageeng
dc.relation80
dc.relationGeophysics
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectMeteorología y Ciencias Atmosféricas
dc.subjectFractures
dc.subjectAttenuation
dc.subjectModeling
dc.subjectSeismic Attributes
dc.subjectMeteorología y Ciencias Atmosféricas
dc.titleIncluding poroelastic effects in the linear slip theory


Este ítem pertenece a la siguiente institución