dc.creatorLaiglecia, Juan Ignacio
dc.creatorLopez Negrete, Rodrigo
dc.creatorDíaz, María Soledad
dc.creatorBiegler, Lorentz
dc.date2012-01
dc.date.accessioned2023-08-30T16:38:59Z
dc.date.available2023-08-30T16:38:59Z
dc.identifierhttp://focapo.cheme.cmu.edu/2012/proceedings/data/start.htm
dc.identifierhttp://rid.unrn.edu.ar/handle/20.500.12049/5969
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8534312
dc.descriptionFil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
dc.descriptionFil: Lopez Negrete, Rodrigo. Department of Chemical Engineering, Carnegie Mellon University Pittsburgh. Pensilvania.
dc.descriptionFil: Díaz, María Soleda. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
dc.descriptionFil: Biegler, Lorentz. Department of Chemical Engineering, Carnegie Mellon University Pittsburgh. Pensilvania.
dc.descriptionIn this work we address dynamic optimization of natural gas processing plants through the use first principle models and full discretization of both control and state variables. The optimization problem includes rigorous models for cryogenic countercurrent heat exchangers with partial phase change, separation tanks, distillation columns and turboexpanders. Thermodynamic predictions are made with a cubic equation of state. The partial differential algebraic equation system is transformed into ordinary differential-algebraic equations (DAEs) by applying the method of Lines for the spatial coordinate in cryogenic heat exchangers. The resulting optimization problem is formulated and solved by applying orthogonal collocation on finite elements, and the large-scale Nonlinear Programming (NLP) problem is olved with a Newton-based Interior Point method. The objective is to switch between operating modes to minimize the offset between current ethane recovery and a set point value. Numerical results provide temporal and spatial profiles of controlled and manipulated variables, while fulfilling specific path constraints associated to ethane extraction processes. In particular, the tight integration between process units as well as path constraints has been efficiently handled with low computational time.
dc.formatapplication/pdf
dc.languageen_US
dc.relationFOCAPO 2012/ CPC VIII Foundations on Computer Aided Process Operations
dc.relationhttp://focapo.cheme.cmu.edu/2012/proceedings/data/start.htm
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectIngeniería, Ciencia y Tecnología
dc.subjectSimultaneous Dynamic Optimization
dc.subjectHeat Exchanger With Phase Change
dc.subjectNatural Gas Plant
dc.subjectIngeniería, Ciencia y Tecnología
dc.titleA simultaneous dynamic optimization approach for natural gas processing plants


Este ítem pertenece a la siguiente institución