dc.creatorItovich, Griselda Rut
dc.date2021-07-12
dc.date.accessioned2023-08-30T16:30:03Z
dc.date.available2023-08-30T16:30:03Z
dc.identifierhttps://mca2021.dm.uba.ar/en/tools/view-abstract?code=3613
dc.identifierhttp://rid.unrn.edu.ar/handle/20.500.12049/8738
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8530491
dc.descriptionFil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro, Argentina.
dc.descriptionThis work is about the analysis of equilibrium stability in certain neutral delay differential equations (ndde), which include several bifurcation parameters. In the considered cases, the associated characteristic equation is an exponential polynomial one with a principal term, so some Pontryagin results [1,2] are a convenient tool to locate its roots. Then, it is possible to set up certain regions in the parameter space where asymptotic stability can be guaranteed. Besides, the outcomes are all in agreement with those coming from a sophisticated application of the Nyquist stability criterion (based on the Cauchy’s argument principle) and also with others found in the literature, related with some real systems modelled by ndde.
dc.formatapplication/pdf
dc.languageen
dc.relationhttps://mca2021.dm.uba.ar/en/
dc.relationMathematical Congress of Americas 2021
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectIngeniería, Ciencia y Tecnología
dc.subjectDelay Differential Equations
dc.subjectNeutral Delay Differential Equations
dc.subjectStability
dc.subjectIngeniería, Ciencia y Tecnología
dc.titleAnalysis of stability in neutral delay differential equations through different approaches


Este ítem pertenece a la siguiente institución