dc.creatorNagar, Daya Krishna
dc.creatorGupta, Arjun Kumar
dc.date2022-03-20T14:34:53Z
dc.date2022-03-20T14:34:53Z
dc.date2014
dc.date.accessioned2023-08-28T21:02:03Z
dc.date.available2023-08-28T21:02:03Z
dc.identifierDaya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c
dc.identifier0196-6324
dc.identifierhttp://hdl.handle.net/10495/26753
dc.identifier10.1080/01966324.2014.928244
dc.identifier2325-8454
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8487637
dc.descriptionABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1)5.
dc.descriptionCOL0000532
dc.format11
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherTaylor and Francis
dc.publisherAnálisis Multivariado
dc.publisherLondres, Inglaterra
dc.relationAm. J. Math. Manag.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectInverse Mellin transformation
dc.subjectBivariate normal distribution
dc.subjectPercentage points
dc.subjectResidue theorem
dc.titlePercentage points for testing homogeneity of several bivariate Gaussian populations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typehttps://purl.org/redcol/resource_type/ART
dc.typeArtículo de investigación


Este ítem pertenece a la siguiente institución