dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBoucher, Chris
dc.date2013-09-25T18:12:36Z
dc.date2013-09-25T18:12:36Z
dc.date2013-09-25
dc.date.accessioned2017-04-05T18:58:46Z
dc.date.available2017-04-05T18:58:46Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/70478
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/23479
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/848025
dc.descriptionFix two points F_1 and F_2 in the plane and consider the locus of a point P so that the sum of the distances from P to F_1 and F_2 equals some constant. For different arithmetic operations (sum, difference, quotient, or product), this set takes on different shapes. If the sum of the distances is constant, the shape is an ellipse with foci at the two points. If the difference of the distances is constant, the shape is a hyperbola with foci at the two points. If the product of the distances is constant, the resulting family of curves are called Cassini ovals. If the quotient of the distances is constant, the resulting curves are circles. The slider controls a value that is proportional to the square of the constant used to determine the black curve.
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram demonstrations project
dc.relationCassiniOvalsAndOtherCurves.nbp
dc.rightsDemonstration freeware using MathematicaPlayer
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Geometria Algébrica
dc.subjectGeometria
dc.titleCassini ovals and other curves
dc.typeSoftware


Este ítem pertenece a la siguiente institución