dc.contributorSepúlveda Cano, Lina María
dc.creatorGonzález Benaissa, Aarón Al Rachid
dc.date2021-06-17T16:01:59Z
dc.date2021-06-17T16:01:59Z
dc.date2021
dc.date.accessioned2023-08-28T20:26:22Z
dc.date.available2023-08-28T20:26:22Z
dc.identifierhttp://hdl.handle.net/10495/20175
dc.identifierhttps://github.com/AaronGonzalezB/monografia-especializacion-udea.git
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8479213
dc.descriptionABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the payment services company Vesta Corporation. Exploratory analysis of the data and different modeling approaches are shown, selecting the most appropriate results for anomaly detection.
dc.format8
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMedellín, Colombia
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectElectronic commerce
dc.subjectComercio electrónico
dc.subjectArtificial intelligence
dc.subjectInteligencia artificial
dc.subjectFraud
dc.subjectFraude
dc.subjectIllegal practices
dc.subjectPracticas Ilegales
dc.subjectClassification systems
dc.subjectSistemas de Clasificación
dc.subjectLinked open data
dc.subjectDatos abiertos vinculados
dc.subjectFraud detection
dc.subjectbinary classification
dc.subjectimbalanced data
dc.subjectdimensionality reduction
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_8139c3d0
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_15682
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_9000017
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_773acdb4
dc.subjecthttp://vocabularies.unesco.org/thesaurus/concept11036
dc.subjecthttp://vocabularies.unesco.org/thesaurus/concept3052
dc.titleIEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
dc.typeinfo:eu-repo/semantics/other
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/coar/resource_type/c_46ec
dc.typehttp://purl.org/redcol/resource_type/COther
dc.typeTesis/Trabajo de grado - Monografía - Especialización


Este ítem pertenece a la siguiente institución