dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorRowland, Eric
dc.date2013-09-25T18:11:58Z
dc.date2013-09-25T18:11:58Z
dc.date2013-09-25
dc.date.accessioned2017-04-05T18:56:57Z
dc.date.available2017-04-05T18:56:57Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/70213
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/23153
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/847760
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.descriptionLet α be a real number, and consider the arithmetic progression 0, α, 2α, 3α, ..., nα modulo 1. You can think of this as walking along a circle with n steps of a fixed length. The three-distance theorem states that the distance between any two consecutive footprints is one of at most three distinct numbers. That is, the circle is partitioned into arcs with at most three distinct lengths
dc.publisherWolfram Demonstration Project
dc.relationThreeDistanceTheorem.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectNumber theory
dc.subjectDiscrete Mathematics
dc.subjectCombinatorics
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Matemática Discreta e Combinatória
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Teoria dos Números
dc.titleThree-distance theorem
dc.typeSoftware


Este ítem pertenece a la siguiente institución