dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Custy, John | |
dc.date | 2013-09-25T18:10:48Z | |
dc.date | 2013-09-25T18:10:48Z | |
dc.date | 2013-09-25 | |
dc.date.accessioned | 2017-04-05T18:53:29Z | |
dc.date.available | 2017-04-05T18:53:29Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/69709 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/22650 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/847256 | |
dc.description | Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.description | This Demonstration shows some geometric relationships between terms in the contour integral around the origin of f(z)=z^n, nEZ. Note in particular that the complete integral around the origin takes on a nonzero value only when n=-1. In this case the z^n term (green) and the dz term (red) rotate in such in such a way that their product z^ndz (green) points in a fixed direction. In all other cases, the product rotates an integer number of times along the complete contour, resulting in a zero value.
The term Lθ in the legend refers to the end-point of the (black) arc of integration | |
dc.publisher | Wolfram Demonstrations Project | |
dc.relation | TheGeometryOfIntegratingAPowerAroundTheOrigin.nbp | |
dc.rights | Demonstration freeware using MathematicaPlayer | |
dc.subject | Complex analysis | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa | |
dc.title | The geometry of integrating a power around the origin | |
dc.type | Software | |