dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorCusty, John
dc.date2013-09-25T18:10:48Z
dc.date2013-09-25T18:10:48Z
dc.date2013-09-25
dc.date.accessioned2017-04-05T18:53:29Z
dc.date.available2017-04-05T18:53:29Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/69709
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22650
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/847256
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.descriptionThis Demonstration shows some geometric relationships between terms in the contour integral around the origin of f(z)=z^n, nEZ. Note in particular that the complete integral around the origin takes on a nonzero value only when n=-1. In this case the z^n term (green) and the dz term (red) rotate in such in such a way that their product z^ndz (green) points in a fixed direction. In all other cases, the product rotates an integer number of times along the complete contour, resulting in a zero value. The term Lθ in the legend refers to the end-point of the (black) arc of integration
dc.publisherWolfram Demonstrations Project
dc.relationTheGeometryOfIntegratingAPowerAroundTheOrigin.nbp
dc.rightsDemonstration freeware using MathematicaPlayer
dc.subjectComplex analysis
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
dc.titleThe geometry of integrating a power around the origin
dc.typeSoftware


Este ítem pertenece a la siguiente institución