dc.contributorAguilar Castro, José Lisandro
dc.creatorRamírez Arango, Alejandro
dc.date.accessioned2022-11-11T16:37:34Z
dc.date.accessioned2023-08-28T13:51:45Z
dc.date.available2022-11-11T16:37:34Z
dc.date.available2023-08-28T13:51:45Z
dc.date.created2022-11-11T16:37:34Z
dc.date.issued2022
dc.identifierhttp://hdl.handle.net/10784/31919
dc.identifier519.233 R173
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8441169
dc.description.abstractEconomic dispatch is a widely analyzed optimization problem in the electricity sector, which seeks to make the best use of available resources to meet demand at minimum cost. This problem has a great complexity in its solution due to the uncertainty of multiple parameters, being of special interest the hydrological uncertainty for the Colombian case due to its high dependence on hydroelectric plants. In this paper, we view economic dispatch as a multistage decision making problem and propose a Reinforcement Learning to solve the Colombian economic dispatch problem considering hydrological scenarios, due to its ability to handle uncertainty and sequential decisions. The policy performance of our algorithm is compared with classic deterministic method. The main advantage of our method is it can learn from a robust policy to deal the inflow and load demand scenarios.
dc.languagespa
dc.publisherUniversidad EAFIT
dc.publisherMaestría en Ciencias de los Datos y Analítica
dc.publisherEscuela de Administración
dc.publisherMedellín
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAcceso abierto
dc.rightsTodos los derechos reservados
dc.subjectAprendizaje por refuerzo
dc.subjectDespacho hidrotérmico
dc.subjectProcesos de decisión markovianos
dc.subjectRedes neuronales
dc.subjectProcesos de Markov
dc.titleDesarrollo de un algoritmo de aprendizaje por refuerzo profundo para resolver el despacho hidrotérmico colombiano considerando escenarios hidrológicos y de demanda bajo incertidumbre
dc.typemasterThesis
dc.typeinfo:eu-repo/semantics/masterThesis


Este ítem pertenece a la siguiente institución