dc.contributorLondoño Sierra, Liz Jeanneth
dc.contributorRiascos Salas, Jaime Andrés
dc.creatorLoaiza Zapata, José Fernando
dc.date.accessioned2023-03-03T20:14:22Z
dc.date.accessioned2023-08-28T13:45:33Z
dc.date.available2023-03-03T20:14:22Z
dc.date.available2023-08-28T13:45:33Z
dc.date.created2023-03-03T20:14:22Z
dc.date.issued2022
dc.identifierhttp://hdl.handle.net/10784/32203
dc.identifier332.41 L795
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8440960
dc.description.abstractThe objective of this paper is to forecast monthly Colombian inflation based on its macroeconomic determinants. 7 machine learning models are used: linear regression, SMV, Decision Trees, MLP, KNN, SVR and LSTM, and 1 conventional ARIMA model. The models with the best prognosis were the ARIMA and the LSTM. Although, the prediction of the LSTM can be improved by making an optimal architecture of the data since it manages to capture the drastic changes of the variables, it could even be improved if the behavior of each of the divisions that make up the basic basket is included.
dc.publisherUniversidad EAFIT
dc.publisherEconomía
dc.publisherEscuela de Finanzas, Economía y Gobierno. Departamento de Economía.
dc.publisherMedellín
dc.relationhttps://colab.research.google.com/drive/1ljBJjqn9hwHQ8eZCbZDcT6BEOY8BXqTu
dc.relationhttps://colab.research.google.com/drive/1H6tEcxq_D2QI40dzIRlEihev1iIy-m56
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAcceso abierto
dc.rightsTodos los derechos reservados
dc.subjectPronóstico
dc.subjectARIMA
dc.titlePronóstico de la inflación colombiana : una aproximación desde los modelos machine learning
dc.typebachelorThesis
dc.typeinfo:eu-repo/semantics/bachelorThesis


Este ítem pertenece a la siguiente institución