Brasil | Software
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBoucher, Chris
dc.date2011-05-26T19:59:03Z
dc.date2011-05-26T19:59:03Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T17:11:36Z
dc.date.available2017-04-05T17:11:36Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/5822
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/8215
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/833233
dc.descriptionKnowledge about Plane Geometry and Triangles
dc.descriptionThe circumcircle of a triangle is the unique circle determined by the three vertices of the triangle. Its center is called the circumcenter (blue point) and is the point where the (blue) perpendicular bisectors of the sides of the triangle intersect. The incircle of a triangle is the triangle circumscribed by the triangle. Its center is called the incenter (green point) and is the point where the (green) bisectors of the angles of the triangle intersect. The incenter and the circumcenter coincide if and only if the triangle is equilateral. Alter the shape of the triangle by dragging the vertices
dc.descriptionComponente Curricular::Ensino Médio::Matemática
dc.publisherWolfram Demonstrations Project
dc.relation349CircumcircleAndIncircleOfATriangle.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectEducação Básica::Ensino Médio::Matemática::Geometria
dc.subjectPlane Geometry
dc.subjectTriangles
dc.titleCircumcircle and incircle of a triangle
dc.typeSoftware


Este ítem pertenece a la siguiente institución