dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBeck, George
dc.date2011-05-26T19:58:02Z
dc.date2011-05-26T19:58:02Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T17:09:33Z
dc.date.available2017-04-05T17:09:33Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/5554
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/8059
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/832965
dc.descriptionRationals, irrational, continuous functions, Dirichlet function
dc.descriptionThis modified Dirichlet function has many names: Thomae, Riemann, popcorn, raindrop, ruler. It is defined on the closed interval [0,1] to be 1/q at reduced rationals p/q and 0 elsewhere. It has the curious property that it is continuous on the irrationals but discontinuous at every rational in (0,1) In contrast, the Dirichlet function (not shown here) is defined to be 1 on the rationals and 0 on the irrationals. It is discontinuous everywhere and its dull graph consists of two blurry lines
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationTheModifiedDirichletFunction.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectRational
dc.subjectIrrational
dc.subjectDirichlet
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise
dc.titleThe modified Dirichlet function
dc.typeSoftware


Este ítem pertenece a la siguiente institución