dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Beck, George | |
dc.date | 2011-05-26T19:58:02Z | |
dc.date | 2011-05-26T19:58:02Z | |
dc.date | 2011-05-26 | |
dc.date.accessioned | 2017-04-05T17:09:33Z | |
dc.date.available | 2017-04-05T17:09:33Z | |
dc.identifier | http://acervodigital.unesp.br/handle/123456789/5554 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/8059 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/832965 | |
dc.description | Rationals, irrational, continuous functions, Dirichlet function | |
dc.description | This modified Dirichlet function has many names: Thomae, Riemann, popcorn, raindrop, ruler. It is defined on the closed interval [0,1] to be 1/q at reduced rationals p/q and 0 elsewhere. It has the curious property that it is continuous on the irrationals but discontinuous at every rational in (0,1)
In contrast, the Dirichlet function (not shown here) is defined to be 1 on the rationals and 0 on the irrationals. It is discontinuous everywhere and its dull graph consists of two blurry lines | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram Demonstration Project | |
dc.relation | TheModifiedDirichletFunction.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Rational | |
dc.subject | Irrational | |
dc.subject | Dirichlet | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise | |
dc.title | The modified Dirichlet function | |
dc.type | Software | |