dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMartínez, Sándor
dc.creatorRosa, Félix
dc.date2011-05-26T19:57:17Z
dc.date2011-05-26T19:57:17Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T17:07:37Z
dc.date.available2017-04-05T17:07:37Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/5297
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/8080
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/832708
dc.descriptionSecant line, continuous function, differentiable functions, Rolle's theorem, Mean Value Theorem
dc.descriptionTheorem: Let f(x) be a function continuous on [a,b] and differentiable on (a,b). Then there is a c in (a,b) such that f'(c) = (f(c)-f(a))/(b-c) Proof: the theorem follows by applying Rolle's theorem to the auxiliary function h(x) = -(x-b)(f(x) – f(a)) Here is a geometric interpretation: The triangle formed by the x axis, the tangent line through (c, f(c)), and the secant line through (c, f(c)) and the point (b, f(a)) is an isosceles triangle (the green triangle). Therefore the slopes of the two sides not on the x axis are f'(c) and –f'(c) The example used is the function f(x) = c0 + c1 x + c2 x^2 + c3 x^3
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationAGeneralizationOfTheMeanValueTheorem.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectDerivative
dc.subjectMean value theorem
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise
dc.titleA generalization of the mean value theorem
dc.typeSoftware


Este ítem pertenece a la siguiente institución